# -*- coding:utf-8 -*-
import numpy as np
import random
# ############数值型的数组#############
# 创建数组
t1 = np.array([1, 2, 3])
print(t1) # [1 2 3]
print(type(t1)) # <class 'numpy.ndarray'>
t2 = np.arange(4.1, 5.6, 0.2)
print(t2) # [4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5]
print(t1.dtype) # int32
print(t2.dtype) # float64
# numpy指定数据类型
t3 = np.arange(10, dtype="int")
print(t3) # [0 1 2 3 4 5 6 7 8 9]
t4 = np.array([1, 1, 0, 0, 1], dtype="bool")
print(t4) # [ True True False False True]
t5 = t4.astype("int")
print(t5) # [1 1 0 0 1]
# numpy小数
t6 = np.array([random.random() for i in range(5)])
print(t6)
print(t6.dtype) # float64
# 保留两位小数,四舍五入
t7 = np.round(t6, 2)
print(t7)
# 一维数组,返回元组,第一个值表示数组个数
print(t7.shape) # (5,)
# 二维数组,返回元组,第一个是行,第二个列
t8 = np.array([[1, 2, 3], [4, 5, 6]])
print(t8)
print(t8.shape) # (2, 3)
# 修改数组
numpy初体验
最新推荐文章于 2023-12-02 21:46:01 发布
本文介绍了numpy库在Python中的基本使用,包括数组创建、操作及数组计算,揭示了numpy在科学计算中的强大功能。
摘要由CSDN通过智能技术生成