1 简介
有一篇文章返修了,由于文章的重点不在分类所以我之前就只写了个Kappa系数上去,没想到审稿人居然要求我提供其他参数ಥ_ಥ可是我只大概存了个各类型的分类。。。虽然后来从垃圾堆里翻了下数据,但也只能得到一个混淆矩阵。。。
说实话分类我做得也不多,作为纯ArcGIS党以前只知道有软件可以跑各种精度或GEE用现成代码跑。。这一块更是纯纯地没有经验。。
本着靠自己不靠别人的原则,这次我就想写一个基于混淆矩阵计算总体精度(Overall Accuracy,OA)、Kappa系数(Kappa Coefficient)、错分误差(Commission Error,CE)、漏分误差(Omission Error,OE)、生产者精度(Producer‘s Accuracy,PA)、用户精度(User’s Accuracy,UA)的代码。
在此之前,我先找呼院士咨询相关公式,它给了我一篇徐小洋的文章。所以这次代码里的公式都是基于这篇文章。
2 案例和代码说明
为了避免一些不必要的麻烦。。我这里拿出我现场随便瞎写的案例来做示例。
如果需要从excel还是哪里读表,可以自行检索相关的读取方法。
首先,我的遥感分类场景里有8类地物,这里敲进去一个矩阵(实际上是8个list)。
a = [200, 2 , 20 , 1 , 9 , 000, 000, 1 ]
b = [6 , 50 , 10 , 2 , 20 , 000, 4 , 6 ]
c = [12 , 6 , 300, 5 , 5 , 000, 000, 11 ]
d = [1 , 1 , 3 , 50 , 9 , 000, 000, 18 ]
e = [4 , 2 , 6 , 2 , 300, 7 , 1 , 22 ]
f = [000, 1 , 2 , 1 , 30 , 80 , 2 , 9 ]
g = [1 , 5 , 3 , 2 , 10 , 10 , 24 , 4 ]
h = [1 , 3 , 15 , 5 , 30 , 5 , 2 , 300]
到时候如果类别个数不一样可以直接改。
然后我再写一行把它合成一个二维矩阵。
Confusion_Matrix = [
a, b, c, d, e, f, g, h
]
上面就是需要结合实际情况改的内容了。。也就是说整个代码只有上面的要动。
我怕有的人不懂改,那么我基于上述8类的场景把它改成一个4类的场景。注意:我只删去了后4类。
a = [200, 2 , 20 , 1 ]
b = [6 , 50 , 10 , 2 ]
c = [12 , 6 , 300, 5 ]
d = [1 , 1 , 3 , 50 ]
Confusion_Matrix = [
a, b, c, d
]
好的,接下来我写函数部分,函数部分不用改直接抄就行了。
import copy
def OA(Confusion_Matrix):
CM = Confusion_Matrix
xia_list = []
for i in range(len(CM)):
xia_list.append(sum(CM[i]))
xia = sum(xia_list)
shang_list = []
for i in range(len(CM)):
shang_list.append(CM[i][i])
shang = sum(shang_list)
OA = shang / xia
return OA
def KP(Overall_Accuracy, Confusion_Matrix):
CM = Confusion_Matrix
p0 = Overall_Accuracy
pe_xia_list = []
for i in range(len(CM)):
pe_xia_list.append(sum(CM[i]))
pe_xia = sum(pe_xia_list) ** 2
CMT = list(map(list, zip(*CM))) # 转置
pe_shang_list = []
for i in range(len(CM)):
pe_shang_list.append(sum(CM[i]) * sum(CMT[i]))
pe_shang = sum(pe_shang_list)
pe = pe_shang / pe_xia
KP = (p0 - pe) / (1 - pe)
return KP
def CE(Class, Confusion_Matrix):
CM = Confusion_Matrix
Class_list = CM[Class]
Commission_list = copy.deepcopy(Class_list)
del Commission_list[Class]
CE = sum(Commission_list) / sum(Class_list)
return CE
def OE(Class, Confusion_Matrix):
CM = Confusion_Matrix
CMT = list(map(list, zip(*CM))) # 转置
Class_list = CMT[Class]
Ommission_list = copy.deepcopy(Class_list)
del Ommission_list[Class]
OE = sum(Ommission_list) / sum(Class_list)
return OE
从上到下依次是总体精度(Overall Accuracy,OA)、Kappa系数(Kappa Coefficient)、错分误差(Commission Error,CE)、漏分误差(Omission Error,OE),而生产者精度(Producer‘s Accuracy,PA)和用户精度(User’s Accuracy,UA)基于CE和OE就可以直接得出,所以就不写复杂的函数了(懒)。
像OA这个函数,参数位把矩阵Confusion_Matrix扔进去就行了;
KP这个函数,需要填你计算好的OA和Confusion_Matrix;
CE和OE这两个函数是基于某一地类的,因此需要填入一个地类的序号,比如说第一类就填0,第二类就填1;
UA和PA是基于CE和OE得出的。。。所以我就没写,直接看输出部分吧。
最后写一个输出把计算的这些精度指标print出来。
# 总体精度
Overall_Accuracy = OA(Confusion_Matrix)
print(Overall_Accuracy)
# 卡帕系数
Kappa = KP(Overall_Accuracy, Confusion_Matrix)
print(Kappa)
# 针对某一类
# 错分误差
Commission_Error = CE(0, Confusion_Matrix) # 第一个参数位写第几类,0是第一类,1是第二类
print(Commission_Error)
# 漏分误差
Omission_Error = OE(0, Confusion_Matrix) # 第一个参数位写第几类,0是第一类,1是第二类
print(Omission_Error)
# 用户精度
Users_Accuracy = 1 - Commission_Error
print(Users_Accuracy)
# 生产者精度/制图精度
Producers_Accuracy = 1 - Omission_Error
print(Producers_Accuracy)
下面是8地类案例print出来的结果。一共有6个指标。
3 完整代码
a = [200, 2 , 20 , 1 , 9 , 000, 000, 1 ]
b = [6 , 50 , 10 , 2 , 20 , 000, 4 , 6 ]
c = [12 , 6 , 300, 5 , 5 , 000, 000, 11 ]
d = [1 , 1 , 3 , 50 , 9 , 000, 000, 18 ]
e = [4 , 2 , 6 , 2 , 300, 7 , 1 , 22 ]
f = [000, 1 , 2 , 1 , 30 , 80 , 2 , 9 ]
g = [1 , 5 , 3 , 2 , 10 , 10 , 24 , 4 ]
h = [1 , 3 , 15 , 5 , 30 , 5 , 2 , 300]
Confusion_Matrix = [
a, b, c, d, e, f, g, h
]
import copy
def OA(Confusion_Matrix):
CM = Confusion_Matrix
xia_list = []
for i in range(len(CM)):
xia_list.append(sum(CM[i]))
xia = sum(xia_list)
shang_list = []
for i in range(len(CM)):
shang_list.append(CM[i][i])
shang = sum(shang_list)
OA = shang / xia
return OA
def KP(Overall_Accuracy, Confusion_Matrix):
CM = Confusion_Matrix
p0 = Overall_Accuracy
pe_xia_list = []
for i in range(len(CM)):
pe_xia_list.append(sum(CM[i]))
pe_xia = sum(pe_xia_list) ** 2
CMT = list(map(list, zip(*CM))) # 转置
pe_shang_list = []
for i in range(len(CM)):
pe_shang_list.append(sum(CM[i]) * sum(CMT[i]))
pe_shang = sum(pe_shang_list)
pe = pe_shang / pe_xia
KP = (p0 - pe) / (1 - pe)
return KP
def CE(Class, Confusion_Matrix):
CM = Confusion_Matrix
Class_list = CM[Class]
Commission_list = copy.deepcopy(Class_list)
del Commission_list[Class]
CE = sum(Commission_list) / sum(Class_list)
return CE
def OE(Class, Confusion_Matrix):
CM = Confusion_Matrix
CMT = list(map(list, zip(*CM))) # 转置
Class_list = CMT[Class]
Ommission_list = copy.deepcopy(Class_list)
del Ommission_list[Class]
OE = sum(Ommission_list) / sum(Class_list)
return OE
# 总体精度
Overall_Accuracy = OA(Confusion_Matrix)
print(Overall_Accuracy)
# 卡帕系数
Kappa = KP(Overall_Accuracy, Confusion_Matrix)
print(Kappa)
# 针对某一类
# 错分误差
Commission_Error = CE(0, Confusion_Matrix) # 第一个参数位写第几类,0是第一类,1是第二类
print(Commission_Error)
# 漏分误差
Omission_Error = OE(0, Confusion_Matrix) # 第一个参数位写第几类,0是第一类,1是第二类
print(Omission_Error)
# 用户精度
Users_Accuracy = 1 - Commission_Error
print(Users_Accuracy)
# 生产者精度/制图精度
Producers_Accuracy = 1 - Omission_Error
print(Producers_Accuracy)
如果对你有帮助,还望支持一下~点击此处施舍或扫下图的码。
-----------------------分割线(以下是乞讨内容)-----------------------