考虑运输时间的分布式柔性作业车间绿色调度

本文探讨了分布式柔性作业车间调度问题(Distributed Flexible Job Shop Scheduling Problem, DFJSP),提出了一种改进的NSGA-II算法,考虑了加工时间、能耗和运输时间,以优化最大完工时间和总能耗。研究针对多目标问题的优化挑战,并引用了相关研究以支持方法论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言  

      据国际能源署统计,世界能源消耗量从 2018年到 2050 年将增长近 50%,而工业部门消耗了全球一半以上的能源。在中国,制造企业消耗了全国 50%以上的电能,并产生了至少 26%的二氧化碳排放量。企业一般通过研发节能设备或采用新的加工技术缓解节能减排的压力,但是上述方法通常需要大量的投入。而绿色调度能够在不增加企业成本的情况下有效减少碳排放并提高能源效率。随着信息技术以及全球化的飞速发展,许多制造企业从传统的单工厂模式逐渐向分布式多工厂模式转变,该模式能够降低人工成本并提高生产效率。作为分布式车间调度问题的重要形式之一,分布式柔性作业车间调度问题(Distributed flexible job shop scheduling problem, DFJSP)重点关注多个柔性作业车间类型的工厂协同生产。

问题描述

DFJGSPT 可以描述为:N 个工件需要在 F 个柔性作业车间类型的工厂内加工。每个工件有 ni道工序,每个工厂有 Mf 台机器。工件需要通过运输工具在工厂以及机器之间运输。工件的加工时间,工件在机器、工厂间的运输时间以及机器的相关能耗信息已知。调度目标为最小化最大完工时间和总能耗。

假设:     (1)所有工件和机器 0 时刻可用;

                (2)每台机器同一时刻只能加工一道工序;

                (3)每个工件同一时刻只能在一台机器上加工;

                (4)不考虑中断情况;

                (5)同一工件不同工序之间有顺序约束;

                (6)有足够的运输工具完成工件的转移;

               (7)不考虑装卸载时间

 符号定义

        为方便描述,引入以下数学符号进行说明:n为工件总数;q 为加工厂总数;f 代表加工厂索引,且 f = 1,2,…,q;mf 为加工厂 f 中的机器数;k,l 代表机器索引,且 k,l = 1,2,…,mf;i 代表工件索引,且 i = 1,2,…,n;ui 为工件 i 的工序数;j 代表工序索引;r 代表加工顺序索引;Oi,j 代表工件 i 的第 j 道工序;Mf,k 代表加工厂 f 中的第 k 台机器;t~  f,k i,j代表工序 Oi,j 在机器 Mf,k 上的模糊加工时间;E~f,k,r代表机器 Mf,k 上加工的第 r 道工序的模糊开始加工时间;Qf,k 代表机器 Mf,k 上加工的工序数目;S~i,j代表工序 Oi,j 的模糊开始加工时间;C~i,j代表工序 Oi,j的模糊结束加工时间;C~i代表工件 i 的模糊完成加工时间;C~max代表最大模糊完工时间;Xf,k i,j是决策变量,若工序 Oi,j 在机器 Mf,k 上加工则为 1,否则为 0;Yf i是决策变量,若工件 i 被分配到加工厂 f 加工则为1,否则为 0;Zf,k,r i,j是决策变量,若工序 Oi,j 是机器Mf,k 上加工的第 r 道工序则为 1,否则为 0。

模型建立

使用的算法

        NSGA-II是一种有效求解多目标优化问题的进化算法,但在求解多目标柔性作业车间调度问题时,存在早熟和易陷入局部最优的不足。本文针对 DFJGSPT 的特性,对 NSGA-II  进行改进:(1)设计了同时考虑加工时间和能耗的初始化方法以提高初始种群的质量;(2)设计了考虑运输时间的贪婪插入解码方法确定工件所分配的工厂并将染色体转换为可行有效的调度方案;(3)采用多父代交叉和新的变异方法进行种群更新;(4)设计了一种变邻域搜索策略以进一步提升 Pareto 前沿的质量。

文献来源

[1] 张洪亮,徐公杰,鲍蔷,. 考虑运输时间的分布式柔性作业车间绿色调度_张洪亮[J]. 中国机械工程: 1-10.

### 关于分布式柔性作业车间调度MATLAB实现 对于分布式柔性作业车间调度 (Distributed Flexible Job Shop Scheduling, DFJSS),研究主要集中在优化算法的设计以及如何有效分配任务到不同机器上。然而,在提供的参考资料中并未直接提及DFJSS的具体MATLAB实现[^1]。 尽管如此,可以考虑利用一些通用的机器学习库来构建自定义解决方案。例如 `scikit-learn` 是最受欢迎的Python库之一,虽然不是专门针对MATLAB开发,但是其理论基础和方法论同样适用于其他编程环境下的应用开发[^2]。不过需要注意的是,这些工具主要用于数据处理、特征提取等方面的支持工作,而不是直接提供调度问题的求解方案。 为了找到更贴合需求的信息源,建议关注以下几个方面: - **学术论文**:许多最新的研究成果会发布在IEEE Xplore Digital Library 或者 Google Scholar 上面,通过查阅相关文献可以获得启发并了解当前领域内的最佳实践案例。 - **开源项目平台**:GitHub 和 GitLab 等平台上可能存在由研究人员分享出来的实验代码片段或是完整的软件包,这将是获取具体实现细节的好去处。 - **专业技术论坛**:像Stack Overflow这样的社区里聚集了大量的开发者和技术爱好者,他们可能会讨论过类似的课题,并给出有价值的见解或链接指向有用的资料。 另外值得注意的是,由于该类问题是NP难问题的一部分,因此通常采用启发式搜索算法(如遗传算法GA)、模拟退火SA等近似计算方式来进行求解。MATLAB本身具备强大的数值分析能力和丰富的内置函数集,非常适合用来编写此类复杂系统的仿真程序。 ```matlab % 这是一个简单的例子展示如何初始化种群用于遗传算法解决调度问题 function population = initPopulation(popSize, chromosomeLength) % 初始化随机二进制字符串作为个体基因型表示法 population = randi([0 1], popSize, chromosomeLength); end ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值