深度学习
文章平均质量分 59
lee813
Machine learning
展开
-
VAE的损失函数的拆分
「Structured Disentangled Representations」这篇文章对VAE的损失函数提出了一个同一化的解释,根据这个解释可以很好的分析近几年来对VAE的各种变形。VAE损失函数的不同形式...原创 2019-10-14 11:19:53 · 12837 阅读 · 0 评论 -
CNN各种结构作用简析
CNN 主要干了什么CNN主要实现的就是特征提取,最经典的应用就是从多个图片中提取出有用的信息。这个过程对于人来说是个黑盒的过程,人们并不能很确切的知道里面发生了什么。结果也是非常抽象的,但是却能学习到很好的效果。一个CNN的结构: 输入→卷积→ReLU→卷积→ReLU→池化→ReLU→卷积→ReLU→池化→全连接CNN 的训练就是训练Filter的参数 3x3 5x5 的矩阵每次...原创 2018-08-28 05:29:51 · 6307 阅读 · 0 评论 -
Deep learning下的单类别分类器应用
单类别分类是什么单类别分类(One class classification)要做的就是一个二叉分类器,只不过它分出来的结果只有两类:要么是这个类,要么不是这个类。很简单的分类模型。图片上单类别分类的问题在这里我们单纯讨论图片的分类问题。如果用简单的224*224的图片做输入,需要分类的唯独就太大了,会导致计算资源消耗很大。解决办法使用CNN做特征提取,使用提取出来的特征做用现有的单类别...原创 2018-11-29 00:18:21 · 5712 阅读 · 4 评论 -
一张基本涵盖了所有神经网络类型的图
原创 2019-01-14 01:03:28 · 1069 阅读 · 0 评论 -
Variational Autoencoder 变分自动编码器
一步一步实现一个VAE大部分来自Keras VAE的教程,不过没有使用mnist,而是用了cifar10的数据集最简单的两个全链接层的Autoencoder先贴个代码:# this is the size of our encoded representationsencoding_dim = 32 # 32 floats -> compression of factor 24....原创 2019-07-28 23:36:11 · 1790 阅读 · 0 评论 -
Keras 使用小结
Keras的两种模型构造方式通用模型(函数式)通用模型可以用来设计非常复杂、任意拓扑结构的神经网络,例如有向无环图网络类似于序列模型,通用模型通过函数化的应用接口来定义模型使用函数化的应用接口有好多好处,比如:决定函数执行结果的唯一要素是其返回值,而决定返回值的唯一要素则是其参数,这大大减轻了代码测试的工作量在通用模型中,定义的时候,从输入的多维矩阵开始,然后定义各层及其要素,最后定义输...原创 2019-03-31 06:33:36 · 593 阅读 · 0 评论 -
PyTorch训练模型小结
平时用了很多Keras,训练的时候非常方便,直接model.fit就可以了。但是PyTorch的训练得自己写,这里小结下PyTorch怎么训练模型。PyTorch训练的大体步骤一个标准的PyTorch模型必须得有一个固定结构的类,结构如下class TwoLayerNet(torch.nn.Module): def __init__(self, D_in, H, D_out): ...原创 2019-04-28 11:45:03 · 9992 阅读 · 6 评论