信息熵、相对熵、交叉熵总结

本文介绍了信息熵、相对熵(KL散度)和交叉熵的概念。信息熵衡量随机变量的不确定性,相对熵反映真实分布与假设分布的拟合程度,交叉熵则常用于评估分类模型性能,当交叉熵越小时,模型拟合度越高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、什么是信息熵
信息熵是由热力学的中的熵引出的概念,在热力学中,熵通常表示事物的混沌程度,事物越混沌,其熵越大。相应的信息熵表示的是随机变量的不确定性,某个事件发生的概率越小,其信息熵越大。具体公式为:
H ( P ) = − ∑ P ( X ) l o g P ( X ) H(P) = -\sum P(X) logP(X) H(P)=P(X)logP(X)
2. 什么是相对熵
相对熵也称为KL散度,描述的是随机变量的真实分布和假设分布的拟合程度,拟合程度越高,相对熵越小。若真实分布与假设分布完全一致,则相对熵为0。相对熵通常用于统计学中,当我们无法得知一个随机变量的真实分布,我们需要提出一个假设分布,并通过对相对熵进行优化得出最优的假设分布。具体公式为:
D ( P ∣ ∣ Q ) = ∑ P ( X ) l o g P ( X ) Q ( X ) D(P||Q) = \sum P(X) log \frac {P(X)} {Q(X)} D(PQ)=

### 信息熵 信息熵是一种衡量随机变量不确定性的指标。对于离散型随机变量 \(X\),其概率质量函数为 \(P(X)\),则信息熵定义如下: \[ H(X) = - \sum_{i=1}^{n} P(x_i) \log_2(P(x_i)) \] 其中,\(P(x_i)\) 表示事件 \(x_i\) 发生的概率[^1]。 信息熵越高,则系统的不确定性越大;反之亦然。 --- ### 交叉熵 交叉熵是用来衡量两个概率分布之间差异的一种方法,在机器学习中广泛应用于分类任务中的损失计算。假设真实分布为 \(P\),预测分布为 \(Q\),那么交叉熵可以表示为: \[ H(P, Q) = - \sum_{i=1}^{n} P(x_i) \log(Q(x_i)) \] 这里需要注意的是,交叉熵不仅依赖于真实的概率分布 \(P\),还取决于模型预测的概率分布 \(Q\)。因此,它是评估模型性能的重要工具之一[^2]。 --- ### KL 散度 KL 散度(Kullback-Leibler divergence),也称为相对熵,用于量化两个概率分布之间的差异程度。给定两个概率分布 \(P\) 和 \(Q\),KL 散度的公式为: \[ D_{KL}(P || Q) = \sum_{i=1}^{n} P(x_i) \log{\frac{P(x_i)}{Q(x_i)}} \] 值得注意的是,KL 散度具有 **非对称性** 和 **非负性** 的特点。即通常情况下 \(D_{KL}(P || Q) \neq D_{KL}(Q || P)\)[^3]。 --- ### JS 散度 JS 散度(Jensen-Shannon divergence)是对称版本的 KL 散度,解决了 KL 散度不对称的问题。它通过引入中间分布来实现这一点。设 \(M = \frac{1}{2}(P + Q)\),则 JS 散度可写成: \[ D_{JS}(P || Q) = \frac{1}{2} D_{KL}(P || M) + \frac{1}{2} D_{KL}(Q || M) \] 由于 JS 散度基于 KL 散度构建,所以它的取值范围在 \([0, 1]\) 内,并且满足对称性和有限性条件。 --- ### 定义区别与联系 | 指标 | 描述 | |------------|------------------------------------------------------------------------------------------| | **信息熵** | 测量单个随机变量本身的不确定性 | | **交叉熵** | 度量两个概率分布间的差异,主要用于监督学习中的目标优化 | | **KL 散度** | 计算一个分布相对于另一个分布的信息增益或“距离”,是非对称的 | | **JS 散度** | 基于 KL 散度改进而来,解决非对称问题并提供更稳定的数值表现 | 这些概念都属于信息论范畴,但在实际应用中有不同的侧重点。例如,交叉熵被频繁用作神经网络训练的目标函数,而 KL 散度更多地出现在变分推断等领域。 --- ### 在机器学习和深度学习中的作用 - **信息熵**:帮助理解数据集内部结构以及特征的重要性。 - **交叉熵**:作为分类任务的核心损失函数,指导模型参数调整以最小化误差。 - **KL 散度**:适用于生成对抗网络 (GANs) 或变分自编码器 (VAEs) 中隐空间分布匹配的任务。 - **JS 散度**:相比 KL 更加稳定可靠,尤其适合处理不平衡样本情况下的相似度比较场景。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值