新入手17款MacbookPro15寸

2018年5月5日,香港沙田新城市广场苹果官方旗舰店购入17款Macbook Pro 15寸手提一台。感谢老婆大人的无条件支持。

先把手上15款Macbook Pro 15寸的简单对比照发一下,用来纪念已经陪伴我三年多的Macbook Pro。

接下来将会对新电脑的配置过程进行记录,方便自己以后查看。

另外,由于新版的Macbook全部采用雷电3 USB-C接口,跟之前的雷电2接口完全不兼容,不得不为转换器而担忧。官网的太贵,TB的担心质量。真是操碎了心。还好之前买了一个SSD的移动硬盘,带有USB-C转USB的线,是我目前兼容的设备。由于工作需要,后面肯定需要买一个USB-C转HDMI或者VGA的转换器。想想USB-C转USB3.1的貌似也是刚需。不过这个不急,先留意着。

Ps:15款的Macbook将会交给老婆管理,也还是在我管理下。





### 苹果MacBook运行1.5亿参数规模的DeepSeek模型兼容性和需求 对于苹果MacBook来说,要成功下载并运行具有1.5亿参数量级的DeepSeek模型,硬件配置和软件环境是决定性的因素之一。现代Apple MacBook Pro型号配备了M系列芯片(如M1, M2),这些处理器内置了强大的神经引擎,能够加速机器学习任务处理效率[^1]。 然而,具体能否流畅执行该大型语言模型还取决于多个方面: #### 硬件资源评估 - **内存容量**:考虑到此类大规模预训练模型所需的RAM大小,建议至少拥有32GB统一内存(RAM),这可以有效减少因频繁交换数据到硬盘而引起的性能下降问题。 - **存储空间**:安装此类型的深度学习框架及其依赖项可能占用大量磁盘空间;因此需要预留足够的SSD可用容量来容纳整个项目文件夹以及临时缓存资料。 - **图形处理能力**:尽管基于ARM架构设计的Mac设备已经具备相当出色的GPU表现力,但对于特别复杂的推理过程而言,仍需关注显卡的具体规格是否满足最低标准。 #### 软件支持情况 - **操作系统版本**:确保使用的macOS处于最稳定版状态,以便获得最佳驱动程序优化和支持特性更。 - **开发工具链适配性**:确认所选编程语言解释器/编译器、库函数集合以及其他辅助组件均已完成针对Apple Silicon平台的良好移植工作,并能正常调用Metal API实现高效计算调度[^2]. ```bash # 安装必要的Python包以准备运行DeepSeek模型 pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 为了验证当前系统的适用程度,在尝试加载完整的1.5亿参数之前,可以从较小规模的数据集入手测试基本功能模块的工作状况。如果一切顺利,则可逐步增加输入尺直至达到目标范围内的复杂度水平。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值