zookeeper和eureka的区别在哪?
传统的关系型数据库是ACID(原子性,一致性,独立性,持久性),
nosql数据库是CAP(强一致性,可用性,分区容错性),分布式系统只能3进2,三个选两个
eureka遵守AP原则,zookeeper遵守CP原则
CA-单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大
CP-满足一致性,分区容忍必的系统,通常性能不是特别高。
AP-满足可用性,分区容忍性的系统,通常可能对一致性要求低一些
分布式系统中,分区容错性是必须遵守的.
Zookeeper
当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。
但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去取系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长, 30 ~ 120s,且选举期间整个2k集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的.
Eureka
Eureka着明白了这一点,因此在设计时就优先保证可用性。
Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作剩余的节点依然可以提供注册和查询服务。
而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。
除此之外, Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况
1, Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
2.Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用)
3,当网络稳定时,当前实例新的注册信息会被同步到其它节点中.
因此, Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样便整个注册服务瘫痪。