Spark SQL重点

Spark SQL允许Spark执行用SQL, HiveQL或者Scala表示的关系查询。这个模块的核心是一个新类型的RDD- SchemaRDD 。 

1、使用反射来推断包含特定对象类型的RDD的模式(schema)。在你写spark程序的同时,当你已经知道了模式,这种基于反射的 方法可以使代码更简洁并且程序工作得更好。

例如

sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt))
people.registerTempTable("people")

/2、方法是通过一个编程接口来实现,这个接口允许你构造一个模式,然后在存在的RDDs上使用它。虽然这种方法更冗长,但是它允许你在运行期之前不知道列以及列 的类型的情况下构造SchemaRDDs。

import org.apache.spark._ 
import org.apache.spark.sql._
import org.apache.spark.sql.types._
import SparkContext._ 
import org.apache.log4j.{Level, Logger}

object SparkSQL { 
  def main(args: Array[String]) { 
      //case class Customer(name:String,age:Int,gender:String,address: String)
     
     
      //屏蔽日志
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
     
    val sparkConf = new SparkConf().setAppName("customers")
    val sc = new SparkContext(sparkConf)
    val sqlContext = new SQLContext(sc)
     
    val schema =
    StructType(
      StructField("name", StringType, false) ::
      StructField("age", IntegerType, true) :: Nil)

    val r = sc.textFile(args(0))
    val people = r.map(_.split(",")).map(p => Row(p(0), p(1).trim.toInt))
     
    val dataFrame = sqlContext.createDataFrame(people, schema)
    dataFrame.printSchema

    dataFrame.registerTempTable("people")
    sqlContext.sql("select * from people where age <25").collect.foreach(println)
 

输入的文件是下面这样
John,15
HanMM,20
Lixurui,27
Shanxin,22

输出结果
Spark <wbr>SQL重点


下面这种写法或许更清楚:
object SparkSQL { 
  def main(args: Array[String]) { 
   
     //屏蔽日志
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
    
    val sparkConf = new SparkConf().setAppName("customers")
    val sc = new SparkContext(sparkConf)
    val sqlContext = new SQLContext(sc)
    
    // The schema is encoded in a string
    val schemaString = "name age"

    // Generate the schema based on the string of schema
    val schema =
      StructType(
        schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))

    val people = sc.textFile(args(0))
    
    // Convert records of the RDD (people) to Rows.
    val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))
    
    val dataFrame = sqlContext.createDataFrame(rowRDD, schema)
    dataFrame.printSchema

    dataFrame.registerTempTable("people")
    sqlContext.sql("select * from people where age <25").collect.foreach(println)
 

Spark SQL能够自动推断JSON数据集的模式,加载它为一个SchemaRDD(最新的被DataFrame所替代)。这种转换可以通过下面两种方法来实现

  • jsonFile :从一个包含JSON文件的目录中加载。文件中的每一行是一个JSON对象
  • jsonRDD :从存在的RDD加载数据,这些RDD的每个元素是一个包含JSON对象的字符串

注意,作为jsonFile的文件不是一个典型的JSON文件,每行必须是独立的并且包含一个有效的JSON对象。结果是,一个多行的JSON文件经常会失败

例如people.json如下:

{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}


import org.apache.spark._ 
import org.apache.spark.sql._
import org.apache.spark.sql.types._
import SparkContext._ 
import org.apache.log4j.{Level, Logger}

object SparkJSON { 
  def main(args: Array[String]) { 
    
     //屏蔽日志
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
    
    val sparkConf = new SparkConf().setAppName("customers")
    val sc = new SparkContext(sparkConf)
    val sqlContext = new SQLContext(sc)
    
    
     // A JSON dataset is pointed to by path.
     // The path can be either a single text file or a directory storing text files.
    val path = "xrli/people.json"
    // Create a SchemaRDD from the file(s) pointed to by path
    val people = sqlContext.jsonFile(path)

    // The inferred schema can be visualized using the printSchema() method.
    people.printSchema()
// root
//  |-- age: integer (nullable = true)
//  |-- name: string (nullable = true)

    // Register this SchemaRDD as a table.
    people.registerTempTable("people")

    // SQL statements can be run by using the sql methods provided by sqlContext.
    val teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")

// Alternatively, a SchemaRDD can be created for a JSON dataset represented by
// an RDD[String] storing one JSON object per string.
    val anotherPeopleRDD = sc.parallelize(
      """{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
    val anotherPeople = sqlContext.jsonRDD(anotherPeopleRDD)
    
    anotherPeople.printSchema()
    anotherPeople.registerTempTable("anotherPeople")
    
    sqlContext.sql("SELECT name FROM anotherPeople")
 

结果
Spark <wbr>SQL重点

Spark SQL   还能跟hive互通,互通需要手动配置一下,参考下面 http://lxw1234.com/archives/2015/06/294.htm
然后就能使用了。比如写进代码
import org.apache.spark._ 
import org.apache.spark.sql._
import org.apache.spark.sql.types._
import SparkContext._ 
import org.apache.log4j.{Level, Logger}

class SparkSQLHive {
    val sparkConf = new SparkConf().setAppName("customers")
    val sc = new SparkContext(sparkConf)
    val sqlContext = new   org.apache.spark.sql.hive.HiveContext(sc)
   
    sqlContext.sql("CREATE TABLE IF NOT EXISTS SparkHive (key INT, value STRING)")
    sqlContext.sql("LOAD DATA LOCAL INPATH 'xrli/kv1.txt' INTO TABLE src")

    // Queries are expressed in HiveQL
    sqlContext.sql("FROM src SELECT key, value").collect().foreach(println)

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值