多任务
多任务有并发和并行之分。
并发:假的多任务,多个任务共用一个核
并行:正的多任务,一个核处理一个程序
线程
python中线程有两种创建方法
使用threading.Thread 创建
如果不使用线程,进行两个任务,一定是要等待任务1完成后才会执行任务2。
import time
def Thread1():
for i in range(5):
print("----- Thread1 ------")
time.sleep(0.1)
def Thread2():
for i in range(5):
print("***** Thread2 *****")
time.sleep(0.1)
def main():
Thread1()
Thread2()
if __name__ == "__main__":
main()
----- Thread1 ------
----- Thread1 ------
----- Thread1 ------
----- Thread1 ------
----- Thread1 ------
***** Thread2 *****
***** Thread2 *****
***** Thread2 *****
***** Thread2 *****
***** Thread2 *****
如果使用了线程那么在任务1执行时,系统会自动调用资源使得资源利用率提高。
import time
import threading
def Thread1():
for i in range(5):
print("----- Thread1 ------")
time.sleep(0.1)
def Thread2():
for i in range(5):
print("***** Thread2 *****")
time.sleep(0.1)
def main():
t1 = threading.Thread(target=Thread1)
t2 = threading.Thread(target=Thread2)
t1.start()
t2.start()
if __name__ == "__main__":
main()
----- Thread1 ------
***** Thread2 *****
----- Thread1 ------
***** Thread2 *****
***** Thread2 *****
----- Thread1 ------
***** Thread2 *****
----- Thread1 ------
***** Thread2 *****
----- Thread1 ------
通过创建threading.Tread的子类
import threading
import time
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
msg = "thread" + str(i)
print(msg)
if __name__ == '__main__':
t = MyThread()
t.start()
通过创建threading.Tread的子类创建线程,我们只需要将执行的函数写入类的run方法中,在开始线程时,仍然使用start()方法。
子类必须要集成threading.Thread父类
查看线程数
可以通过threading.enumerate()
来查看当前的线程数。
线程共享全局变量
在线程中,全局变量是共享的,每个线程调用并修改全局变量在其他线程中都会有体现。
import threading
g_num = 100
def test1():
global g_num
g_num += 100
print("---- test1 %d----" % g_num)
def test2():
global g_num
g_num +=100
print("---- test2 %d----" % g_num)
def main():
t1 = threading.Thread(target=test1)
t2 = threading.Thread(target=test1)
t1.start()
t2.start()
if __name__ == "__main__":
main()
---- test1 200----
---- test1 300----
可以看到对于全局变量,不同线程的操作都是有效的。
对全局变量的操作
在一个函数中对全局变量的修改的时候,是否需要使用global进行说明,要看是否对全局变量的指向进行了修改。
如果修改了指向,即让全局变量指向了一个新的地方,那么必须要用global,如果仅仅修改了指向的空间中的数据,则不需要使用global。
>>> num = 100
>>> nums = [11,22]
>>> def test():
... global num
... num += 100
...
>>> def test2():
... nums.append(33)
...
>>> print(num)
100
>>> print(nums)
[11, 22]
>>> test()
>>> test2()
>>> num
200
>>> nums
[11, 22, 33]
共享全局变量出现的问题
在执行任务复杂时,可能因为系统资源分配问题,在一个操作没有完成的时候系统就将资源分配给另一个线程导致最终的数据出错。
import threading
import time
g_num = 0
def work1(num):
global g_num
for i in range(num):
g_num += 1
print("----in work1, g_num is %d---" % g_num)
def work2(num):
global g_num
for i in range(num):
g_num += 1
print("----in work2, g_num is %d---" % g_num)
print("---线程创建之前g_num is %d---" % g_num)
t1 = threading.Thread(target=work1, args=(1000000, ))
t1.start()
t2 = threading.Thread(target=work2, args=(1000000, ))
t2.start()
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
threading.Thread() 线程指定的函数有参数,通过args=()传递参数,传递的内容是元组。(xx,xx,)
Liyingshu:网络编程 mac$ /usr/local/bin/python3 /Users/mac/Desktop/网络编程/web服务器/多任务/全局变量问题.py
—线程创建之前g_num is 0—
----in work1, g_num is 1230221—
----in work2, g_num is 1327526—
2个线程对同一个全局变量操作之后的最终结果是:1327526
Liyingshu:网络编程 mac$ /usr/local/bin/python3 /Users/mac/Desktop/网络编程/web服务器/多任务/全局变量问题.py
—线程创建之前g_num is 0—
----in work1, g_num is 1334166—
----in work2, g_num is 1483024—
2个线程对同一个全局变量操作之后的最终结果是:1483024
可以看到两次执行的结果不一样,这就是线程共享全局变量出现的问题。如果要避免这个问题的发生,我们需要添加互斥锁,即在资源共享时,一个线程操作的同时另外的线程只有等待上一个操作完成后才能操作。
互斥锁
threading模块中定义了Lock类,可以方便的处理锁定:
# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()
上一个例子里如果添加了互斥锁就不会出现数据错误的情况了。
import threading
import time
g_num = 0
def test1(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print("---test1---g_num=%d" % g_num)
def test2(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print("---test2---g_num=%d" % g_num)
# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()
# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=test1, args=(1000000, ))
p1.start()
p2 = threading.Thread(target=test2, args=(1000000, ))
p2.start()
# 等待计算完成
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
—test2—g_num=1971926
—test1—g_num=2000000
2个线程对同一个全局变量操作之后的最终结果是:2000000
进程
进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。
创建进程
创建进程要使用multiprocessing
模块。
Process([group [, target [, name [, args [, kwargs]]]]])
target
:如果传递了函数的引用,这个子进程就执行这里的代码
args
:给target指定的函数传递的参数,以元组的方式传递
kwargs
:给target指定的函数传递命名参数
name
:给进程设定一个名字,可以不设定
group
:指定进程组,大多数情况下用不到
Process创建的实例对象的常用方法:
start()
:启动子进程实例(创建子进程)
is_alive()
:判断进程子进程是否还在活着
join([timeout])
:是否等待子进程执行结束,或等待多少秒
terminate()
:不管任务是否完成,立即终止子进程
Process创建的实例对象的常用属性:
name
:当前进程的别名,默认为Process-N,N为从1开始递增的整数
pid
:当前进程的pid(进程号)
import multiprocessing
import time
def work1():
while True:
print("---this is work1---")
time.sleep(0.5)
def main():
p1 = multiprocessing.Process(target=work1)
p1.start()
while True:
print("---this is main---")
time.sleep(0.5)
if __name__ == "__main__":
main()
获取进程的pid
通过导入os
模块,使用os.getpid()
方法来获取进程的pid。
import multiprocessing
import time
import os
def work1():
print('子进程运行中,pid=%d...' % os.getpid()) # os.getpid获取当前进程的进程号
while True:
print("---this is work1---")
time.sleep(0.5)
def main():
print('父进程pid: %d' % os.getpid()) # os.getpid获取当前进程的进程号
p1 = multiprocessing.Process(target=work1)
p1.start()
while True:
print("---this is main---")
time.sleep(0.5)
if __name__ == "__main__":
main()
父进程pid: 3666
—this is main—
子进程运行中,pid=3668…
—this is work1—
—this is main—
—this is work1—
—this is main—
—this is work1—
—this is main—
进程传参
import multiprocessing
import time
def work1(name,age,*args,**kwargs):
print("name: %s, age:%d" % (name,age))
print(args)
print(kwargs)
def main():
p1 = multiprocessing.Process(target=work1,args=("lee",18,20,12,{1234,123}),kwargs={'y':11})
p1.start()
if __name__ == "__main__":
main()
name: lee, age:18
(20, 12, {1234, 123})
{‘y’: 11}
超出指定的参数个数时,其他的参数都存在一个元组中,例子中的20,12,{1234,123},列表则用kwargs来赋值。
进程不共享全局变量
在进程中,对全局变量的修改不共享。
from multiprocessing import Process
import os
import time
nums = [11, 22]
def work1():
print("process1 pid=%d ,nums=%s" % (os.getpid(), nums))
for i in range(5):
nums.append(i)
time.sleep(1)
print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
def work2():
print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))
if __name__ == '__main__':
p1 = Process(target=work1)
p1.start()
p1.join()
p2 = Process(target=work2)
p2.start()
process1 pid=3995 ,nums=[11, 22]
in process1 pid=3995 ,nums=[11, 22, 0]
in process1 pid=3995 ,nums=[11, 22, 0, 1]
in process1 pid=3995 ,nums=[11, 22, 0, 1, 2]
in process1 pid=3995 ,nums=[11, 22, 0, 1, 2, 3]
in process1 pid=3995 ,nums=[11, 22, 0, 1, 2, 3, 4]
in process2 pid=3997 ,nums=[11, 22]
进程间的通信
进程间不能共享全局变量,有时我们需要在进程中进行通信,模块中提供了Queue
方法进行进程间的通信。
初始化Queue(num)
对象时(例如:q=Queue()),如果没有指定num,那么就代表可接受的消息数量没有上限(直到内存的尽头);
Queue.qsize()
:返回当前队列包含的消息数量,在mac os无法使用 ;
Queue.empty()
:如果队列为空,返回True,反之False ;
Queue.full()
:如果队列满了,返回True,反之False;
Queue.get([block[, timeout]])
:获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
1)block表示,如果消息队列为空是否堵塞等待,timeout表示如果堵塞了,系统等待多少秒,超过了这个时间系统叫抛出"Quere,Empty"异常。
2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
Queue.get_nowait()
:相当Queue.get(False);
Queue.put(item,[block[, timeout]])
:将item消息写入队列,block默认值为True;
1)block表示,如果消息队列为已经满了,没有空间写入了,timeout表示如果堵塞了,系统等待多少秒,超过了这个时间系统叫抛出"Quere,Empty"异常。
2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
Queue.put_nowait(item)
:相当Queue.put(item, False);
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print('Get %s from queue.' % value)
time.sleep(random.random())
else:
break
if __name__ == '__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q, ))
pr = Process(target=read, args=(q, ))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print('')
print('所有数据都写入并且读完')
Put A to queue…
Put B to queue…
Put C to queue…
Get A from queue.
Get B from queue.
Get C from queue.
进程池
apply_async(func[, args[, kwds]])
:使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
close()
:关闭Pool,使其不再接受新的任务;
terminate()
:不管任务是否完成,立即终止;
join()
:主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务。
from multiprocessing import Pool
import os, time, random
def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d" % (msg, os.getpid()))
# random.random()随机生成0~1之间的浮点数
time.sleep(random.random() * 2)
t_stop = time.time()
print(msg, "执行完毕,耗时%0.2f" % (t_stop - t_start))
po = Pool(3) # 定义一个进程池,最大进程数3
for i in range(0, 10):
# Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
# 每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker, (i, ))
print("----start----")
po.close() # 关闭进程池,关闭后po不再接收新的请求
po.join() # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
----start----
1开始执行,进程号为5628
0开始执行,进程号为5627
2开始执行,进程号为5629
0 执行完毕,耗时0.67
3开始执行,进程号为5627
2 执行完毕,耗时0.69
4开始执行,进程号为5629
4 执行完毕,耗时0.10
5开始执行,进程号为5629
5 执行完毕,耗时0.62
6开始执行,进程号为5629
1 执行完毕,耗时1.68
7开始执行,进程号为5628
7 执行完毕,耗时0.15
8开始执行,进程号为5628
6 执行完毕,耗时0.95
9开始执行,进程号为5629
9 执行完毕,耗时0.01
3 执行完毕,耗时1.78
8 执行完毕,耗时1.92
-----end-----
进程池内的Queue通信
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue()
from multiprocessing import Manager, Pool
import os, time, random
def reader(q):
print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in range(q.qsize()):
print("reader从Queue获取到消息:%s" % q.get(True))
def writer(q):
print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in "itcast":
q.put(i)
if __name__ == "__main__":
print("(%s) start" % os.getpid())
q = Manager().Queue() # 使用Manager中的Queue
po = Pool()
po.apply_async(writer, (q, ))
time.sleep(1) # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据
po.apply_async(reader, (q, ))
po.close()
po.join()
print("(%s) End" % os.getpid())
(4866) start
writer启动(4868),父进程为(4866)
reader启动(4869),父进程为(4866)
reader从Queue获取到消息:i
reader从Queue获取到消息:t
reader从Queue获取到消息:c
reader从Queue获取到消息:a
reader从Queue获取到消息:s
reader从Queue获取到消息:t
(4866) End
协程
协程自带cpu上下文,在cpu处理耗时操作,可以从一个协程切换到另一个协程,yield
可以实现它。python自带两个函数,greenlet
和gevent
可以实现协程。
greenlet
import greenlet
import time
def work1():
while True:
print("---1--")
gr2.switch()
time.sleep(1)
def work2():
while True:
print("---2--")
gr1.switch()
time.sleep(1)
gr1 = greenlet.greenlet(work1)
gr2 = greenlet.greenlet(work2)
gr1.switch()
—1–
—2–
—1–
—2–
—1–
—2–
—1–
—2–
—1–
—2–
—1–
—2–
—1–
—2–
—1–
—2–
—1–
通过switch
方法手动切换协程,python还有gevent函数,可以实现自动切换协程。
gevent
通过gevent.spawn(target, item)
创建协程,通过join()
来执行协程,也可以使用joinall()
执行多个协程。
from gevent import monkey
import gevent
import random
import time
# 有耗时操作时需要
monkey.patch_all() # 将程序中用到的耗时操作的代码,换为gevent中自己实现的模块
def work1(coroutine_num):
for i in range(10):
print(coroutine_num, i)
time.sleep(random.random())
def work2(coroutine_num):
for i in range(15):
print(coroutine_num, i)
time.sleep(random.random())
gr1 = gevent.spawn(work1, gevent.getcurrent())
gr2 = gevent.spawn(work2, gevent.getcurrent())
gr1.join()
gr2.join()
# gevent.joinall([
# gevent.spawn(work1, gevent.getcurrent()),
# gevent.spawn(work2, gevent.getcurrent())
# ])
<greenlet.greenlet object at 0x7faab63664a0> 0
<greenlet.greenlet object at 0x7faab63664a0> 0
<greenlet.greenlet object at 0x7faab63664a0> 1
<greenlet.greenlet object at 0x7faab63664a0> 2
<greenlet.greenlet object at 0x7faab63664a0> 1
<greenlet.greenlet object at 0x7faab63664a0> 2
<greenlet.greenlet object at 0x7faab63664a0> 3
<greenlet.greenlet object at 0x7faab63664a0> 4
<greenlet.greenlet object at 0x7faab63664a0> 3
<greenlet.greenlet object at 0x7faab63664a0> 4
<greenlet.greenlet object at 0x7faab63664a0> 5
<greenlet.greenlet object at 0x7faab63664a0> 5
<greenlet.greenlet object at 0x7faab63664a0> 6
<greenlet.greenlet object at 0x7faab63664a0> 6
<greenlet.greenlet object at 0x7faab63664a0> 7
<greenlet.greenlet object at 0x7faab63664a0> 7
<greenlet.greenlet object at 0x7faab63664a0> 8
<greenlet.greenlet object at 0x7faab63664a0> 9
<greenlet.greenlet object at 0x7faab63664a0> 8
<greenlet.greenlet object at 0x7faab63664a0> 9
<greenlet.greenlet object at 0x7faab63664a0> 10
<greenlet.greenlet object at 0x7faab63664a0> 11
<greenlet.greenlet object at 0x7faab63664a0> 12
<greenlet.greenlet object at 0x7faab63664a0> 13
<greenlet.greenlet object at 0x7faab63664a0> 14
gevent中的延时是gevent.sleep(),我们需要打补丁来避免麻烦,monkey.patch_all()
.