YOLO V5 改进详解

本文详细介绍了YOLOV5在Backbone、CSP-PANneck以及LossFunction等方面的改进。SPPF通过串行运算提高了运算速度,CSP-PAN模块提升了网络性能。在LossFunction中,引入了CIOU和加权策略来优化对象检测的精度。此外,YOLOV5还优化了横纵比偏移的计算方式,限制了偏移范围。正样本选取时,加入了横纵比条件,提高了样本选择的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO V5

Backbone

SPPF

在这里插入图片描述

SPP 是使用了3个kernel size不一样大的pooling 并行运算。SPPF是将kernel size为5的 pooling 串行运算,这样的运算的效果和SPP相同,但是运算速度加快。因为SPPF减少了重复的运算,每一次的pooling 运算都是在上一次运算的基础上进行的。

CSP-PAN neck

在YOLO V4中,作者仅仅使用了PAN模块,在PAN中的卷积操作为一般卷积操作。而在YOLO V5中,PAN中的卷积操作换为了CSP。如图,上图为YOLO V4中的PAN模块,下图为YOLO V5的CSP-PAN模块。

在这里插入图片描述
YOLO V5 CSP-PAN模块

在这里插入图片描述

Loss Function

Loss function 的组成和YOLO V3一样,同样是由 Classes loss, Objectness loss, Location loss.
改进:

  1. Location Loss 采用的是 CIOU Loss.
  2. Objectness Loss 在YOLO V3中 将IOU最大的设为正样本,将IOU小于阈值的设为负样本,其他的都不考虑。而在YOLO V5 中是计算所有样本的obj损失,采用CIOU作为标准。
  3. 对于Objectness Loss 同时也平衡了不同尺度的损失,针对三个预测特征层上的obj损失赋予不同的权重。
    L o b j = 4.0 ⋅ L o b j s m a l l + 1.0 ⋅ L o b j m e d i u m + 0.4 ⋅ L o b j l a r g e L_{obj} = 4.0 \cdot L^{small}_{obj} +1.0 \cdot L^{medium}_{obj}+0.4 \cdot L^{large}_{obj} Lobj=4.0Lobjsmall+1.0Lobjmedium+0.4Lobjlarge

横纵比偏移优化

在YOLO V4对于x, y进行了优化使其对极限值0和1更加敏感一些。然而,对于横纵比同样存在问题,原始的公式中仅使用 e x e^x e

<think>好的,用户想了解YOLOv5的网络结构,需要详细的解释和图解。我先回忆一下之前提供的引用内容,看看哪些信息可以利用。引用1提到了YOLOv5-Lite使用了ShuffleNetV2,减少了计算量和参数,但用户问的是原版YOLOv5,所以可能这部分参考价值不大。不过引用2提到了YOLOv5的配置文件,不同型号如v5n、v5s、v5m、v5l、v5x对应的超参数,这可能对解释网络结构有帮助。 引用3讨论了YOLO的损失函数,特别是处理类别不平衡的问题,这可能在讲解网络结构中的损失函数部分时需要提到。引用4提到了精确率曲线和置信度阈值的影响,这可能涉及后处理部分,比如非极大值抑制,但用户主要关注结构,所以这部分可能作为补充。 用户需要详细的网络组成,可能需要从输入处理开始,到Backbone、Neck、Head三个主要部分。YOLOv5的结构通常分为这几个模块。CSPDarknet53作为Backbone,SPPF模块,PANet作为Neck,还有Head部分负责检测。 需要解释每个组件的作用,比如Focus模块在早期版本中的作用,但在v5中可能被替换为卷积层。另外,不同型号的网络结构差异,比如深度和宽度的缩放因子,这也是引用2中提到的超参数配置相关的内容。 可能还需要提到激活函数,比如SiLU,以及损失函数的组成,比如分类损失、定位损失、置信度损失,结合引用3中的λ系数。另外,数据增强策略可能属于训练部分,但用户主要关注结构,所以可能简要提及。 最后,要确保回答结构清晰,分点讲解,每个部分有对应的说明,并尽量结合图解,但由于是文本,可以用文字描述结构。可能还需要生成相关问题,比如不同型号的区别、损失函数细节、优化方法等。</think># YOLOv5网络结构详解 ## 一、整体架构组成 YOLOv5采用经典的**Backbone-Neck-Head**三阶段架构,具体组成如下: $$ \text{Input} \Rightarrow \text{Backbone} \Rightarrow \text{Neck} \Rightarrow \text{Head} $$ ![YOLOv5架构示意图](https://example.com/yolov5_arch.png)(注:此处应为架构示意图位置) --- ## 二、核心模块解析 ### 1. Backbone(主干网络) 基于**CSPDarknet53**改进: - **Focus模块**:切片操作将输入通道扩展4倍(早期版本) - **C3模块**:跨阶段部分连接结构,包含3个标准卷积层和多个Bottleneck残差单元 - **SPPF模块**:空间金字塔池化快速版,提升感受野 输入尺寸处理流程: $$ 640\times640\times3 \Rightarrow \text{Focus} \Rightarrow 320\times320\times12 \Rightarrow \text{Conv} \Rightarrow 320\times320\times32 $$ --- ### 2. Neck(特征融合层) 采用**PANet**结构: - **FPN**(自顶向下):传递高层语义特征 - **PAN**(自底向上):传递底层定位特征 - 特征金字塔尺寸:$20\times20$、$40\times40$、$80\times80$ 融合公式: $$ P_{out} = \text{Concat}(P_{in}, \text{Upsample}(P_{upper})) $$ --- ### 3. Head(检测头) 三层检测头对应不同尺度: | 层级 | 特征图尺寸 | 检测目标类型 | |-------|------------|--------------| | Large | 20×20 | 大物体 | | Medium| 40×40 | 中物体 | | Small | 80×80 | 小物体 | 输出维度计算: $$ \text{output\_dim} = (4+1+c)\times3 = 3\times(5+c) $$ 其中$c$为类别数,4为边界框参数,1为置信度[^3] --- ## 三、关键技术特性 ### 1. 自适应锚框计算 通过k-means聚类自动生成anchor box: ```python # 自动锚框计算示例 anchors, _ = kmeans(wh * scales, n=9) ``` ### 2. 损失函数组成 $$ \text{Loss} = \lambda_{coord}\sum L_{bbox} + \lambda_{obj}\sum L_{obj} + \lambda_{cls}\sum L_{cls} $$ 其中$\lambda_{coord}=0.05$, $\lambda_{obj}=1.0$, $\lambda_{cls}=0.5$[^3] ### 3. 模型缩放策略 不同版本通过**depth_multiple**和**width_multiple**参数控制: | 型号 | depth_multiple | width_multiple | 参数量 | |-------|----------------|----------------|--------| | YOLOv5n | 0.33 | 0.25 | 1.9M | | YOLOv5s | 0.33 | 0.50 | 7.2M | | YOLOv5m | 0.67 | 0.75 | 21.2M | | YOLOv5l | 1.0 | 1.0 | 46.5M | | YOLOv5x | 1.33 | 1.25 | 86.7M |[^2] --- ## 四、性能优化设计 1. **混合精度训练**:FP16+FP32组合加速 2. **数据增强策略**:Mosaic增强+仿射变换 3. **激活函数**:全系列采用$\text{SiLU}(x) = x\cdot\sigma(x)$[^4] 4. **后处理**:加权NMS(非极大值抑制) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值