坚持学习前端的第20天

没错,今天是第一阶段最后一天课程,恭喜你完成了这一阶段的学习。回顾整个学习过程,从最基础的 HTML 开始,到 CSS ,共持续了 20 天。这一阶段我们学习了:

1.HTML 常用标签的使用;
2.CSS 中各种选择器的定义和使用;
3.块级和行内元素在浏览器中的不同表现;
4.display 属性;
5.CSS 选择器的权重以及 Less 的使用;
6.CSS常用的属性;
7.盒子模型;
8.Node、npm、DOM、JavaScript、CSS布局;(了解)

在开课的时候,我和大家承诺,打卡满 10 天以上(不包含10天,统计时间截止到本节课程发布)的同学将会获得本阶段的电子书。我把这部分内容整理成了一本电子书。

如果你打卡大于10天,可以添加我微信 wsy9871,告诉我打卡天数,我确认无误后会把电子书发你。

另外,如果你想获取电子书,但是没有打卡,可以通过以下任意一种方式获取:
1 .转发本篇文章到微信朋友圈,集15个赞,截图发我即可;

2.赞赏,金额多少无所谓;

在每一阶段结束的最后一天我会开一次赞赏,坚持打卡学习的朋友都知道,前端小课是我一个人在写,一直坚持原创,而且完全免费,如果课程对你有一点帮助,希望你能够赞赏支持一下,不在意金额多少,我只希望得到更多读者的认可。

电子书属于我自己原创,请尊重原创,不要随意传播。

第二阶段课程:死磕CSS布局

在第一阶段我们只是简单的使用了 CSS 中的流式布局,对其它布局方式只做了简单的了解。但是, CSS 布局是非常重要的内容,需要深入学习。这部分内容对于初学者理解起来并不是一件易事,所以我特意用一个阶段来学习这部分内容,共 13 天。这一阶段的大纲如下,可能会根据具体情况做一些微小的调整,实战部分可能会做一个朋友圈。

第二阶段课程部分设计图:

参与方式如下:
1.关注公众号「素燕」,文末有二维码;

2. 在公众号留言区输入打卡指令即可完成打卡,每天文章中会带有不同的打卡指令;

由于微信群很难沉淀内容,导致同一问题被很多同学提问,所以有问题直接公众号留言,其它方式不予回复,望见谅。

第一阶段课程目录

第一阶段的课程可以通过下面的方式获取:

今天打卡指令:

学习前端20天后,你有什么想对前端小课说的吗?

推荐阅读:
移动端同学为什么要学前端
第9天:自我介绍

群里讨论的一个选择器问题(一定要看)


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值