算法
文章平均质量分 75
DI O
这个作者很懒,什么都没留下…
展开
-
机器学习---k近邻算法---预测facebook签到
k近邻算法---预测facebook签到步骤分析代码实现1.获取数据集2.基本数据处理缩小数据范围选择时间特征去掉签到较少的地方确定特征值和目标值分割数据集3.特征工程 -- 特征预处理(标准化)4.机器学习 -- knn+cv5.模型评估步骤分析具体步骤:1.获取数据集2.基本数据处理2.1 缩小数据范围2.2 选择时间特征2.3 去掉签到较少的地方2.4 确定特征值和目标值2.5 分割数据集3.特征工程 – 特征预处理(标准化)4.机器学习 – knn+cv5.模型评估代码原创 2021-07-21 03:42:34 · 400 阅读 · 0 评论 -
机器学习(数据集划分/准确率评估/归一化/标准化/超参数搜索和网络搜索)
机器学习算法流程1 (数据集)数据集的划分 :避免过拟合(避免上线尴尬)2 (模型评估)分类算法的评估:计算准确率3 (特征工程)归一化和标准化: 缩放,避免量纲大小对特征进行影响4 (模型训练)超参数与交叉验证SKlearn中的超参数搜索(网络搜索)与交叉验证算法流程获取数据数据基本处理特征工程机器学习(模型训练)模型评估1 (数据集)数据集的划分 :避免过拟合(避免上线尴尬)测试集 最好只能用一次一般将数据中的70%-80%作为训练数据,将剩余的作为测试数据注意:在训原创 2021-07-21 03:17:25 · 1151 阅读 · 1 评论