机器学习(数据集划分/准确率评估/归一化/标准化/超参数搜索和网络搜索)

本文介绍了机器学习中的关键步骤,包括数据集的划分以避免过拟合,通过准确率评估模型性能,以及特征工程中的归一化和标准化操作。还探讨了超参数搜索和交叉验证在模型训练中的应用,以提高模型的稳定性和准确性。
摘要由CSDN通过智能技术生成

算法流程

在这里插入图片描述

  1. 获取数据
  2. 数据基本处理
  3. 特征工程
  4. 机器学习(模型训练)
  5. 模型评估

1 (数据集)数据集的划分 :避免过拟合(避免上线尴尬)

测试集 最好只能用一次
一般将数据中的70%-80%作为训练数据,将剩余的作为测试数据
注意:

  • 在训练集测试集划分的时候都会先做乱序
  • X_train y_train 训练集的特征和目标
  • X_test y_test 测试集的特征和目标
  • 一般训练集测试集的比例 70% 30%
    • 80% 20%
    • random_state 每一次划分训练集测试集都是一样的

导包以及API:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=22)
# 百分20 测试集 随机种子22
#random_state  设置随机数种子  这个参数的值传的一样,那么每次生成的随机数就是一样的  写一个固定的值,就是为了方便复现结果

2 (模型评估)分类算法的评估:计算准确率

比例越高说明模型效果越好
API

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值