【Pandas】6.1 缺失值

无论是机器学习还是深度学习,在数据预处理阶段经常会遇到对缺失值、离群值以及重复数据的处理。

# 导入所需要的库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

本节介绍对缺失值的规范、删除和替换操作。

pandas中缺失值的默认值使用NaN(Not a Number)。python中的内置常数None也看作缺失值处理。

1 缺失值的生成与判断

NaN对象可以使用Numpy数组的常数numpy.nan生成


> DataFrame 类的isna方法


> pandas 中inf 、-inf的处理

无穷大浮点数inf .pandas 默认不会处理正的inf和-inf,但可以对设置进行更改。

生成方式:(1)python内置float函数;(2)numpy.inf.

pandas中有可以对设置进行变更的选项pd.options属性。使用pd.options.mode.use_inf_as_na来控制是否将inf和-inf作为缺失值来处理(默认False):


>np.nan 与None

在numpy中使用“==”运算符进行比较时,NaN和None(看做NaN,且NaN! = NaN)是False;python中None是True。

 运算符“==”无法将DataFrame或者Series中的对象提取出来,因此会将所有元素返回False.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值