大家都知道 在Python 中可以用如下方式表示正负无穷:
1
2
|
float
(
"inf"
)
# 正无穷
float
(
"-inf"
)
# 负无穷
|
利用 inf(infinite)
乘以 0 会得到 not-a-number(NaN)
。如果一个数超出 infinite,那就是一个 NaN(not a number)
数。在 NaN 数中,它的 exponent 部分为可表达的最大值,即 FF(单精度)、7FF(双精度)和 7FFF(扩展双精度)。 NaN 数与 infinite 数的区别是:infinite 数的 significand 部分为 0 值(扩展双精度的 bit63 位为 1);而 NaN 数的 significand 部分不为 0 值。
我们先看看如下的代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
>>> inf
=
float
(
"inf"
)
>>> ninf
=
float
(
"-inf"
)
>>> nan
=
float
(
"nan"
)
>>> inf
is
inf
True
>>> ninf
is
ninf
True
>>> nan
is
nan
True
>>> inf
=
=
inf
True
>>> ninf
=
=
ninf
True
>>> nan
=
=
nan
False
>>> inf
is
float
(
"inf"
)
False
>>> ninf
is
float
(
"-inf"
)
False
>>> nan
is
float
(
"nan"
)
False
>>> inf
=
=
float
(
"inf"
)
True
>>> ninf
=
=
float
(
"-inf"
)
True
>>> nan
=
=
float
(
"nan"
)
False
|
如果你没有尝试过在 Python 中判断一个浮点数是否为 NaN,对以上的输出结果肯定会感到诧异。首先,对于正负无穷和 NaN 自身与自身用 is 操作,结果都是 True,这里好像没有什么问题;但是如果用 == 操作,结果却不一样了, NaN 这时变成了 False。如果分别用 float 重新定义一个变量来与它们再用 is 和 == 比较,结果仍然出人意料。出现这种情况的原因稍稍有些复杂,这里就不赘术了,感兴趣可以查阅相关资料。
如果你希望正确的判断 Inf 和 Nan 值,那么你应该使用 math 模块的 math.isinf
和 math.isnan
函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
>>>
import
math
>>> math.isinf(inf)
True
>>> math.isinf(ninf)
True
>>> math.isnan(nan)
True
>>> math.isinf(
float
(
"inf"
))
True
>>> math.isinf(
float
(
"-inf"
))
True
>>> math.isnan(
float
(
"nan"
))
True
|
这样便准确无误了。既然我在谈论这个问题,就是再忠告:不要在 Python 中试图用 is 和 == 来判断一个对象是否是正负无穷或者 NaN。你就乖乖的用 math 模块吧,否则就是引火烧身。
当然也有别的方法来作判断,以下用 NaN 来举例,但仍然推荐用 math 模块,免得把自己弄糊涂。
用对象自身判断自己
1
2
3
4
5
|
>>>
def
isnan(num):
...
return
num !
=
num
...
>>> isnan(
float
(
"nan"
))
True
|
用 numpy 模块的函数
1
2
3
4
5
6
7
8
|
>>>
import
numpy as np
>>>
>>> np.isnan(np.nan)
True
>>> np.isnan(
float
(
"nan"
))
True
>>> np.isnan(
float
(
"inf"
))
False
|
Numpy 的 isnan 函数还可以对整个 list 进行判断:
1
2
3
4
5
|
>>> lst
=
[
1
,
float
(
"nan"
),
2
,
3
, np.nan,
float
(
"-inf"
),
4
, np.nan]
>>> lst
[
1
, nan,
2
,
3
, nan,
-
inf,
4
, nan]
>>> np.isnan(lst)
array([
False
,
True
,
False
,
False
,
True
,
False
,
False
,
True
], dtype
=
bool
)
|
这里的 np.isnan
返回布尔值数组,如果对应位置为 NaN,返回 True,否则返回 False。