回归分析

【一元线性回归】

设有两个随机变量 XY 具有统计关系,即当 X 变化时,Y也相应地变化,但关系不确定。当  X=x0  时, Y 可能取得很多值,为求得它们的关系,我们以 X=x0 时 Y 的所有可能取值的平均来代表y,即取  y0=E(Y|X=x0) (这是 X=x0 时的 Y 的条件期望),当x0在其定义域内变化时得函数:

y=E(Y|E=x)μ(x)

这是一个确定的函数,它大略反应了 X Y的变化规律。称之为 Y X回归方程
在“均方意义”下回归方程  y=μ(x)  是最优的。

μ(x)=a+bx  的假定下所谓的一元线性回归问题。若再假设:

yN(a+bx,σ2)

或改写为:
y=a+bx+εεN(0,σ2)(1)

其中 abσ2 为不依赖 x 的未知参数。称其为一元线性回归模型
由样本得到式(1)中 a,b 估计 a^,b^ 便得到 y 关于x线性回归方程
y^=a^+b^x

引入:
Sxx=i=1n(xix¯)2=i=1nx2i1n(i=1nxi)2Syy=i=1n(yiy¯)2=i=1ny2i1n(i=1nyi)2Sxy=i=1n(xix¯)(yiy¯)=i=1nxiyi1n(i=1nxi)(i=1nyi)

由最小二乘法或极大似然估计可得:
b^=SxySxxa^=1ni=1nyi(1ni=1nxi)b^

关于 σ2 的估计使用残差平方和

Qe=i=1n(yiyi^)2=i=1n(yia^b^xi)2

经分解计得:
Qe=Syyb^Sxy

σ^2=Qen2 σ2 无偏估计。

【多元线性回归】

多元线性回归模型:

y=b0+b1x1++bmxm+εεN(0,σ2)

采用二乘法和求偏导数,整理后得到方程组,引入矩阵:
X=111x11x21xn1x1mx2mxnmY=y1y2ynB=b0b1bm

则方程组可写成:
XTXB=XTY

于是可解得:
B=b0b1bnB^=b^0b^1b^n=(XTX)1XTY

称方程:
y^=b^0+b^1x1++b^mxm

m元线性回归方程
其残差平方和为:
Qe=i=1n(yiy^i)=YT[EnX(XTX)1XT]Y

可以得到: E(Qe)=(nm1)σ2 ,即:
σ^2=Qenm1

σ2 的无偏估计。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值