说起斐波拉切数列,大家肯定知道下面的递归公式,而且可能书本上递归程序部分也举了这个例子。
如果要计算斐波拉切数列中第n个数是什么,我们可能有下面的思考过程,f(n) = f(n-1) + f(n-2),通过第n个数的前两项来计算,但是前两项有可能也是未知的,因为继续计算前两项的值,这种思路是按照上面的公式比较正常的,即有下面的树结构的计算过程(假设我们计算第7个数)。现在从第7个数往前算的时候,其中包含大量的重复,比如左侧的第5项,在右侧分支也要重新计算一遍,相当于多一个数,计算量就要增加一个倍数,复杂度达到O(2^n)。
经过上面的递归的思想的计算,我们考虑是否可以将重复的部分进行保存,然后直接用。所以我们从头开始计算,而不是从后面递归计算。前俩为0,1,然后从第3个开始,f(3)=f(2)+f(1),然后依次计算,知道计算出我们所要的那一位。此时的计算复杂度O(n)。
附上代码,第一种为递归方式,第二种为从头到尾的计算ÿ