动态规划系列(1)——斐波拉切数列

本文介绍了斐波那契数列的递归计算及其高复杂度问题,提出通过动态规划避免重复计算,实现从头到尾的线性复杂度计算方法。并提供了递归和动态规划两种代码实现。
摘要由CSDN通过智能技术生成

说起斐波拉切数列,大家肯定知道下面的递归公式,而且可能书本上递归程序部分也举了这个例子。

如果要计算斐波拉切数列中第n个数是什么,我们可能有下面的思考过程,f(n) = f(n-1) + f(n-2),通过第n个数的前两项来计算,但是前两项有可能也是未知的,因为继续计算前两项的值,这种思路是按照上面的公式比较正常的,即有下面的树结构的计算过程(假设我们计算第7个数)。现在从第7个数往前算的时候,其中包含大量的重复,比如左侧的第5项,在右侧分支也要重新计算一遍,相当于多一个数,计算量就要增加一个倍数,复杂度达到O(2^n)。

经过上面的递归的思想的计算,我们考虑是否可以将重复的部分进行保存,然后直接用。所以我们从头开始计算,而不是从后面递归计算。前俩为0,1,然后从第3个开始,f(3)=f(2)+f(1),然后依次计算,知道计算出我们所要的那一位。此时的计算复杂度O(n)。

附上代码,第一种为递归方式,第二种为从头到尾的计算ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值