HBase Versus Bigtable(comparison)

below views are all from hbase's guide(maybe with my some comments fonted by deferent size)

 

Overall, HBase implements close to all of the features described in Chapter 1. Where it differs, it may have to because either the Bigtable paper was not very clear to begin with, or it relies on other open source projects to provide various services and those simply work differently.

 

 

HBase stores timestamps in milliseconds—as opposed to Bigtable, which uses micro- seconds. This is not much of an issue and can possibly be attributed to C and Java having different preferred timer resolutions.

( i have saw that someone were talking about using 'us' instead of ms a few weeks ago,maybe this feature will be refenenced)

 

While we have not yet addressed the specific details, it should be pointed out that both also use different compression algorithms. HBase uses those supplied in Java, but can also use LZO (with a bit of work; we will look into this later).* Bigtable has a two-phase compression using BMDiff and Zippy(the father of snappy).

 

HBase has coprocessors that are different from what Sawzall, the scripting language used in Bigtable to filter or aggregate data, or the Bigtable Coprocessor framework,provides. The details on Google’s coprocessor implementation are rather sketchy, so if there are more differences, they are unknown. On the other hand, HBase has support for server-side filters that help reduce the amount of data being moved from the server to the client.

 

HBase does primarily work with the Hadoop Distributed File System (HDFS), while Bigtable uses GFS. But HBase can also work on other filesystems thanks to the pluggable FileSystem class provided by Hadoop. There are implementations for Amazon S3 (raw or emulated HDFS), as well as EBS.

 

HBase cannot map storage files into memory, something that is available in Bigtable. There is ongoing work in HBase to optimize I/O performance, and with the addition

 

 

* While writing this book, Google made Zippy available under the Apache license and the name Snappy. The work to integrate it with HBase is still in progress. See the project’s online repository for details.

† Jeff Dean gave a talk at LADIS ’09 (pages 66-67) mentioning coprocessors.

of more widespread use of Java’s New I/O (NIO), it may be something that could be enhanced.

 

Bigtable has a concept called locality groups, which allow the client to group specific column families together and apply shared features, such as compression. This is also useful when the contained columns are accessed together, as all the data is stored in the same storage files. Column families in Bigtable are used for accounting and access control. In HBase, on the other hand, there is only the concept of column families, combining the features that Bigtable has in two distinct concepts.

 

Apart from the block cache that both systems have, Bigtable also implements a key/ value cache, probably for cells that are accessed a lot.

 

The handling and implementation of the commit log also differs slightly. Bigtable has two commit logs to handle slow writes and is able to switch between them to com- pensate for that. This could be implemented in HBase, but it does not seem to be a topic for discussion, and therefore is omitted for the time being.

In contrast, HBase has an option to skip the commit log completely on writes for per- formance reasons and when the possibility of not being able to replay those logs after a server crash is acceptable.

 

 

The METADATA table in Bigtable is also used to store secondary information such as log events related to each tablet. This historical data can be used to analyze tablet transi- tions, splits, and/or merges. HBase had the notion of a historian in earlier versions that implemented the same concept, but its performance was not good enough and it has been removed.

 

While splitting regions/tablets is the same for both, merging is handled differently. HBase has a tool that helps you to merge regions manually, while in Bigtable this is handled automatically by the master. Merging in HBase is a delicate operation and currently is left to the operator to decide what is best.

 

Another very minor difference is that the master in Bigtable is doing the garbage collection of obsolete storage files. One reason for this could be the fact that, in Bigtable, the storage files are tracked in the METADATA table. For HBase, the cleanup is done by the region server that has done the split and no file location is recorded explicitly.

 

Bigtable can memory-map entire storage files and use them to perform lookups without a single disk seek. HBase has an in-memory option per column family and uses its LRU cacheto retain blocks for subsequent use.

 

There are also some differences in the compaction algorithms. For example, a merging compaction also includes a memtable flush. Mostly, though, they are the same and simply use different names.

‡ See Cache algorithms on Wikipedia. 498 | Appendix F:

 

 

Region names, as stored in the meta table in HBase, are a combination of the table name, the start row key, and an ID. In Bigtable, the corresponding tablet names consist of the table identifier and the end row. This has a few implications when it comes to locating data in the storage files (see “Read Path” on page 342).

 

 

Finally, it can be noted that HBase has two separate catalog tables, -ROOT- and .META., while in Bigtable the root table, since in both systems it only ever consists of one single region/tablet, is stored as part of the meta table. The first tablet in the METADATA table is the root tablet, and all subsequent ones are the meta tablets. This is just an implementation detail. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值