“LSTM的参数解释,LSTM

LSTM的参数解释

LSTM总共有7个参数:前面3个是必须输入的

1:input_size: 输入特征维数,即每一行输入元素的个数。输入是一维向量。如:[1,2,3,4,5,6,7,8,9],input_size 就是9

2:hidden_size: 隐藏层状态的维数,即隐藏层节点的个数,这个和单层感知器的结构是类似的。这个维数值是自定义的,根据具体业务需要决定,如下图:

input_size:就是输入层,左边蓝色方格 [i0,i1,i2,i3,i4],hidden_size:就是隐藏层,中间黄色圆圈 [h0,h1,h2,h3,h4]。最右边蓝色圆圈 [o0,o1,o2] 的是输出层,节点个数也是按具体业务需求决定的。

3:num_layers: LSTM 堆叠的层数,默认值是1层,如果设置为2,第二个LSTM接收第一个LSTM的计算结果。也就是第一层输入 [ X0 X1 X2 ... Xt],计算出 [ h0 h1 h2 ... ht ],第二层将 [ h0 h1 h2 ... ht ] 作为 [ X0 X1 X2 ... Xt] 输入再次计算,输出最后的 [ h0 h1 h2 ... ht ]。(下面是一开始对这个参数的理解,现在看来是错误的,但依然保留,防止哪天再次理解错误)

(RNN 单元的个数。我们可以简单理解,LSTM 实际上就是由多个上面图例的结构组成(准确说是一个 RNN 结构),一个结构体为一个单元,也可以叫做一个神经元。这里的 num_layers 就是表示有多少个这样的结构体。如下图:就是 A 单元的个数,换言之,就是你有多少个连续相关的数据需要输入,就有多少个这样的结构体来组成 LSTM。 因为 LSTM 要实现的功能就是根据前后相关联的数据来推断结果,前后数据之间必须建立某种联系,而这种联系一般都是有顺序性或有时序的数据。)

4:bias: 隐层状态是否带bias,默认为true。bias是偏置值,或者偏移值。没有偏置值就是以0为中轴,或以0为起点。偏置值的作用请参考单层感知器相关结构。

5:batch_first: 输入输出的第一维是否为 batch_size,默认值 False。因为 Torch 中,人们习惯使用Torch中带有的dataset,dataloader向神经网络模型连续输入数据,这里面就有一个 batch_size 的参数,表示一次输入多少个数据。 在 LSTM 模型中,输入数据必须是一批数据,为了区分LSTM中的批量数据和dataloader中的批量数据是否相同意义,LSTM 模型就通过这个参数的设定来区分。 如果是相同意义的,就设置为True,如果不同意义的,设置为False。 torch.LSTM 中 batch_size 维度默认是放在第二维度,故此参数设置可以将 batch_size 放在第一维度。如:input 默认是(4,1,5),中间的 1 是 batch_size,指定batch_first=True后就是(1,4,5)。所以,如果你的输入数据是二维数据的话,就应该将 batch_first 设置为True;

6:dropout: 默认值0。是否在除最后一个 RNN 层外的其他 RNN 层后面加 dropout 层。输入值是 0-1 之间的小数,表示概率。0表示0概率dripout,即不dropout

7:bidirectional: 是否是双向 RNN,默认为:false,若为 true,则:num_directions=2,否则为1。 我的理解是,LSTM 可以根据数据输入从左向右推导结果。然后再用结果从右到左反推导,看原因和结果之间是否可逆。也就是原因和结果是一对一关系,还是多对一的关系。这仅仅是我肤浅的假设,有待证明。

首先,看看官方给出的例子

# 首先导入torch和nn模块
import torch
import torch.nn as nn	 # 神经网络模块

# 数据向量维数10, 隐藏元维度20, 2个LSTM层串联(如果是1,可以省略,默认为1)
rnn = nn.LSTM(10, 20, 2)

# 序列长度seq_len=5, batch_size=3, 数据向量维数=10,在nn.LSTM接口中可以指定
# 	batch_first=True将batch_size作为第一维度,默认为False
input = torch.randn(5, 3, 10)

# 初始化的隐藏元和记忆元,通常它们的维度是一样的
# 2个LSTM层,batch_size=3,隐藏元维度20
h0 = torch.randn(2, 3, 20)<br>
c0 = torch.randn(2, 3, 20)</p>

# 这里有2层lstm,output是最后一层lstm的每个词向量对应隐藏层的输出,其与层数无关,只与序列长度相关
# hn,cn是所有层最后一个隐藏元和记忆元的输出
output, (hn, cn) = rnn(input, (h0, c0))

print(output.size(),hn.size(),cn.size())

>>> torch.Size([5, 3, 20]) torch.Size([2, 3, 20]) torch.Size([2, 3, 20])

注意:

1、对 nn.LSTM(10, 20, 2) 最后一个参数的理解。这是 2 个完整的 LSTM 串连,是 LSTM参数中 num_layers 的个数。

 

上图,是一个完整的 LSTM。2 个LSTM的运作是,第一层的输出 h0 h1 h2 ... ht,变成 第二层 LSTM 的 x0 x1 x2 ... xt 输入。

2、torch.randn(5, 3, 10) 数据中第一维度5(有5组数据,每组3行,每行10列),在整个模型中似乎没有看到在哪里处理了5次。整个模型也没有循环5次,它到哪了呢?

其实,它被自动分配到上图中的 A 的个数,也就是每一个LSTM层中,有5个A(神经元)。也就是每次输入模型的数据长度是可变的。也许,这就是为什么被称为长短记忆了。

举一个栗子,假如我们输入有3个句子,每个句子都由5个单词组成,而每个单词用10维的词向量表示,则seq_len=5, batch=3, input_size=10。而事实上每一个句子不可能是固定5个单词组成。所以,使用LSTM网络,就不要担心单词数量不相等。

<think>好的,我现在需要帮助用户解决关于LSTM模型中隐藏层数量设置的问题。首先,我要回顾用户提供的引用内容。用户提到了引用[1]关于Keras中LSTM参数的选择,以及引用[2]关于时间序列分析的步骤,特别是时间窗口的选择。用户的问题是如何确定LSTM网络中隐藏层数量的最佳实践和参数调优建议。 首先,我需要明确LSTM隐藏层的作用。隐藏层的数量和每个层的神经元数量直接影响模型的复杂度和学习能力。层数太少可能导致欠拟合,无法捕捉复杂模式;层数太多可能导致过拟合或训练困难。因此,确定合适的层数需要平衡模型复杂度和数据规模。 根据引用[1],选择超参数时需要考虑数据复杂度和数据量。这提示我应该建议用户从简单结构开始,逐步增加层数,观察性能变化。例如,先尝试1-2层隐藏层,这是大多数时间序列任务的常见配置。如果模型表现不佳,再考虑增加到3层,但需要注意过拟合风险。 接下来,引用[2]提到时间序列分析中的时间窗口选取,这可能与模型的输入结构有关。虽然用户的问题是关于隐藏层数量,但时间窗口的选择可能会影响隐藏层的设计。例如,较长时间窗口可能需要更深的网络来捕捉长期依赖,但需要更多的数据支持。这里可能需要建议用户结合时间窗口的选取来调整层数,但具体如何结合可能需要进一步分析。 然后,我需要考虑参数调优的建议。用户可能想知道除了层数之外的其他相关参数,如神经元数量、dropout率等。根据引用[1],使用验证集和交叉验证来评估不同配置的性能是关键。此外,正则化技术如dropout和L2正则化可以帮助防止过拟合,特别是在层数较多的情况下。 用户可能没有明确提到的深层需求包括计算资源限制和实际应用场景。例如,深层LSTM需要更多的训练时间和计算资源,这可能影响实际应用中的可行性。因此,在建议中需要考虑平衡性能和资源消耗。 总结下来,回答的结构应该是:首先介绍隐藏层数量的影响因素,然后给出逐步调整的建议,接着讨论相关参数调优的方法,最后提到实际应用中的注意事项。需要引用用户提供的两个引用,特别是关于超参数选择和时间序列处理的部分。 现在需要验证这些思路是否符合现有的知识。例如,LSTM通常不推荐使用过多层数,因为梯度消失问题虽然LSTM本身缓解了,但深层网络仍可能难以训练。一般来说,1-3层是常见的,这与我的初步建议一致。另外,参数调优中的网格搜索或随机搜索方法也是标准做法,结合早停法可以防止过拟合。 可能遗漏的点是具体案例或实验结果的引用,但用户提供的引用中没有具体的数据,因此可能需要更一般性的建议。另外,需要强调实验和迭代的重要性,因为不同问题的最佳配置可能差异很大。 最后,生成的相关问题需要与主题相关,例如隐藏层与神经元数量的关系、深层LSTM的挑战、自动调参方法以及评估指标的选择。这些问题可以帮助用户进一步探索该主题。</think>### LSTM隐藏层数量设置及参数调优建议 确定LSTM网络隐藏层数量的最佳实践需要结合**数据复杂度**、**样本量**和**计算资源**进行权衡。以下是具体步骤和建议: --- #### 1. **隐藏层数量的影响因素** - **数据复杂度**:简单序列(如传感器信号)通常使用1-2层,复杂序列(如自然语言)可能需要2-3层[^1]。 - **样本量**:数据量较少时,层数过多易导致过拟合;大规模数据可支持更深的结构。 - **时间窗口长度**:长期依赖问题(如长文本预测)需要更深的网络或结合注意力机制[^2]。 --- #### 2. **逐步调整方法** - **初始建议**:从1层开始,逐步增加至2-3层,观察验证集性能变化。 - **实验设计**: ```python # 示例:Keras中构建2层LSTM model = Sequential() model.add(LSTM(64, return_sequences=True, input_shape=(time_steps, features))) # 第一层需返回序列 model.add(LSTM(32)) # 第二层默认不返回序列 model.add(Dense(1)) ``` - **终止条件**:当验证损失不再显著下降或开始上升时,减少层数或添加正则化。 --- #### 3. **相关参数调优建议** - **神经元数量**:每层神经元数通常从64-256开始尝试,需与层数平衡(例如:2层×128神经元 vs. 3层×64神经元)。 - **正则化技术**: - 使用Dropout(如`Dropout(0.2)`)或L2正则化(如`kernel_regularizer=l2(0.01)`)。 - 建议仅在非最后一层LSTM添加Dropout[^1]。 - **优化策略**: - 用验证集评估不同配置,结合早停法(Early Stopping)。 - 使用超参数优化工具(如Keras Tuner或Grid Search)。 --- #### 4. **实际应用注意事项** - **深层LSTM的挑战**:超过3层可能导致梯度不稳定或训练时间剧增,可尝试残差连接(Residual Connections)。 - **轻量化替代方案**:资源受限时,可用1层LSTM+全连接层,或改用TCN(时间卷积网络)。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值