PyTorch的nn.LSTM
模块是一个用于构建长短期记忆(LSTM)网络的类,它是一种特殊类型的循环神经网络(RNN),能够学习序列数据中的长期依赖关系
。
LSTM网络被广泛用于时间序列预测
、自然语言处理
、语音识别
等领域。下面,我将简要介绍nn.LSTM
的基本概念和如何在PyTorch中使用它。
基本组成
- 输入层(Input Layer):接收序列数据的输入。
- 隐藏层(Hidden Layers):可以有多层,每一层都包含LSTM单元,负责处理序列中的信息,捕捉序列的长期依赖。
- 输出层(Output Layer):根据隐藏层的输出生成最终的结果。
关键特性
- 遗忘门(Forget Gate):决定哪些信息应该被遗忘或抛弃。
- 输入门(Input Gate)