Pytorch实用教程:Pytorch的nn.LSTM中参数的含义

本文介绍了PyTorch的nn.LSTM模块,详细解析了LSTM的基本组成、关键特性、使用步骤及注意事项。内容涵盖遗忘门、输入门、细胞状态和输出门的概念,并给出LSTM参数的含义及示例代码,帮助理解和应用LSTM处理序列数据。
摘要由CSDN通过智能技术生成

PyTorch的nn.LSTM模块是一个用于构建长短期记忆(LSTM)网络的类,它是一种特殊类型的循环神经网络(RNN),能够学习序列数据中的长期依赖关系

LSTM网络被广泛用于时间序列预测自然语言处理语音识别等领域。下面,我将简要介绍nn.LSTM的基本概念和如何在PyTorch中使用它。

基本组成

  • 输入层(Input Layer):接收序列数据的输入。
  • 隐藏层(Hidden Layers):可以有多层,每一层都包含LSTM单元,负责处理序列中的信息,捕捉序列的长期依赖。
  • 输出层(Output Layer):根据隐藏层的输出生成最终的结果。

关键特性

  • 遗忘门(Forget Gate):决定哪些信息应该被遗忘或抛弃。
  • 输入门(Input Gate)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值