满帮股权曝光:张晖持股10.2%,有77%投票权 软银是股东

3ed91e3921b477f2f47ce0f04f7d0bc2.jpeg

雷递网 雷建平 5月19日

满帮(Full Truck)日前向美国SEC递交20-F文件,文件显示,截至2024年3月31日,满帮董事长兼CEO张晖持股为10.2%,有77.3%的投票权。

b78269d6a6d987d0ac0767c9f48aa253.jpeg

截至2024年3月31日,满帮股权结构

软银通过SVF entities持股为14.6%股权,有3.7%投票权;Richard Weidong Ji通过All-Stars持股为3.2%。

截至2023年3月31日,张晖持股为10.9%,有78.5%的投票权;软银通过SVF entities持股为16.4%股权,有4%的投票权;

d06a54010bd9eff65c9b48f38cb7bb29.jpeg

截至2023年3月31日,满帮股权结构

红杉持股为5.6%,有1.4%的投票权。Richard Weidong Ji通过All-Stars持股为3.9%,有1%的投票权。

对比可发现,过去一年,张晖持股比例下降0.7个百分点,投票权下降1.2个百分点;软银持股比例下降1.8个百分点,投票权下降0.3个百分点;红杉退出主要股东行列;All-Stars持股下降0.7个百分点。

2018年,满帮完成19亿美元融资,国新基金和软银愿景基金联合领投,谷歌资本(CapitalG)、Farallon Capital、Baillie Gifford、Ward Ferry、阳光保险融汇资本、金沙江创投、新世界K11投资、农银国际跟投。

2020年11月,满帮宣布完成约17亿美元融资,满帮本轮融资由软银愿景基金、红杉、璞米和富达(Fidelity)联合领投,高瓴、纪源、光速、云锋、襄禾、Baillie Gifford、全明星、CMC、腾讯等现有股东参与跟投。

2021年6月,满帮在纽交所上市,行使超配权后募资约18亿美元。

满帮创始人、董事长、CEO为Peter Hui Zhang(张晖),总裁为Langbo Guo,CFO为Simon Chong Cai,首席风险官、总法律顾问(Chief Risk Officer and General Counsel)为Kai Shen,首席客户官(Chief Customer Officer)为Zhenghong Wang。

ed1dec73efebdca4099c4288671ff7e2.jpeg

年报显示,满帮在2021年、2022年、2023年营收分别为46.57亿元、67.33亿元、84.36亿元(约11.88亿美元);运营利润分别为-37.96亿元、-1.62亿元、9.97亿元(约1.4亿美元);

d7f6c91df6e447f67104422c96c8cab0.jpeg

满帮在2021年、2022年、2023年净利分别为-36.55亿元、4.12亿元、 22.27亿元(约3.13亿美元),净利率分别为-78.5%、6.1%、26.5%。

截至2023年12月31日,满帮集团持有现金及现金等价物、受限制现金、短期投资、长期投资、理财为276亿(约39亿美元),上年同期为263亿元。

截至今日,满帮股价为9.42美元,市值为98.51亿美元。

———————————————

雷递由媒体人雷建平创办,若转载请写明来源。

6f833243dccdc04e418ef09d1b7a9f74.jpeg

数据集介绍:多类别水果目标检测与实例分割数据集 一、基础信息 数据集名称:多类别水果目标检测与实例分割数据集 图片数量: - 训练集:11,110张图片 - 验证集:635张图片 - 测试集:316张图片 - 总计:12,061张农业场景图片 分类类别: 苹果、香蕉、哈密瓜、无花果、葡萄、葡萄柚、柠檬、芒果、橙子、桃子、梨、菠萝、石榴、草莓、西瓜 标注格式: - YOLO格式,包含边界框及多边形坐标标注,兼容目标检测与实例分割任务 - 数据格式:农业场景实拍图片,覆盖不同光照条件、果实成熟度及遮挡场景 二、适用场景 农业自动化分拣系统: 支持构建水果识别与定位模型,用于智能分拣设备视觉模块开发,提升水果分类效率。 农业机器人视觉模块: 适用于果园巡检机器人,实现多类别水果实时检测与空间定位。 水果产量预估系统: 通过实例分割标注可精确计算果实分布密度,为产量预测提供数据支持。 农产品质量检测: 支持检测果实表面缺陷、形态异常等特征,适用于自动化质量分级系统。 计算机视觉算法研究: 为多目标检测、小样本实例分割等前沿算法提供高质量农业领域验证数据。 教育实训案例: 可作为农业AI应用开发课程的实践数据集,覆盖数据标注、模型训练全流程。 三、数据集优势 多任务适配性: 同时包含目标检测(边界框)与实例分割(多边形)标注,支持两种计算机视觉任务联合训练。 高类别完备性: 覆盖15种全球主要经济水果,包含常见热带水果(如芒果、菠萝)与温带水果(如苹果、梨)。 真实场景多样性: 数据采集涵盖果园、仓储、运输等多场景,包含果实重叠、枝叶遮挡、不同成熟度等实际工况。 标注专业性强: 所有标注经过农业专家校验,确保果实边界的精确标注,特别针对易混淆品种(如柑橘类)提供区分标注。 算法兼容度高: YOLO格式可直接应用于主流深度学习框架(YOLOv5/v7/v8、MMDetection等),
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值