高数所有不定积分:一共就5种方法。
1.直接积分(内含推导过程,方便理解)
(1)考验的是背诵记忆的能力+计算的准确能力
(2)背诵的时候理看着推导过程解着背,其实大多数都是常用导数的逆推导
(3)注意一下tanx的积分和“根号下 (a方-x方 )分之一”的积分
(4)内容里面也包含了常用函数的导数+三角函数的常用转换
(5)三角函数中,题目中的常用转换有:
cosx*secx=1 sinx*cscx=1 tanx*cotx=1
eg:出现cosx,就要联想到1/secx
怎么记?
余切×正切=1,正弦×余割=1,余弦×正割=1
————
cos2x=cos方x-sin方x=2cos方x-1=1-2sin方x
怎么记?
2cos方x主动-1,cos方x 主动- sin方x,因为cos2x和它是一家人。
2sin方x只能被1减,因为它是外人
————
cosa/sina=cota(会常用到)
————
tan方a+1=sec方a cot方a+1=sec方a
正切对正割 余切对余割
2.换元法
(1)第一换元法(凑微分法)
考验的是函数的构造能力,也就是“凑”的能力
其实也密切运用到了直接积分法,所以两个方法并非割裂,而是递进。
(2)第二换元法(应用于连续导数,其实就复合函数)
3.分部积分法
(1)常用情况下,是“反对幂指三”
(2)特殊情况下要根据实际情况来判断(比如“消项”的情况)
(3)实战下来,一个不定积分至少要用到两次分部积分法
4.有理函数的不定积分
(1)应用范围:
被积函数的分母
无论如何转化,
都不可以被直接积分,
这时候就要用到不定积分
(2)操作方法:
无论假分式和真分式,最后都要拆成和的形式
5.三角函数有理式的不定积分
应用范围:一个函数里只包含了sinx和cosx
这个时候,可以尝试用万能代换式直接暴解。
总结:
(1)直接积分法:
是老祖宗,任何不定积分最后一步想要转换成自然式,都要用到它。
它和其他方法是递进与被递进的关系,而非割裂关系
(2)换元法
用于处理复合函数
(3)分部积分法
用于处理不同类型函数的组合
(4)有理函数积分
直接积分法不行时,就用它
(5)三角函数有理式的不定积分
只包含sinx,cosx时,就用它。
————
下节内容,直接讲例题进行应用。