5.3 五分钟速通“不定积分”——《2026李林高数辅导讲义》

高数所有不定积分:一共就5种方法。

1.直接积分(内含推导过程,方便理解)

(1)考验的是背诵记忆的能力+计算的准确能力

(2)背诵的时候理看着推导过程解着背,其实大多数都是常用导数的逆推导

(3)注意一下tanx的积分和“根号下 (a方-x方 )分之一”的积分

(4)内容里面也包含了常用函数的导数+三角函数的常用转换

(5)三角函数中,题目中的常用转换有:

cosx*secx=1        sinx*cscx=1      tanx*cotx=1

eg:出现cosx,就要联想到1/secx

怎么记?

余切×正切=1,正弦×余割=1,余弦×正割=1

————

cos2x=cos方x-sin方x=2cos方x-1=1-2sin方x

怎么记?

2cos方x主动-1,cos方x 主动-  sin方x,因为cos2x和它是一家人。

2sin方x只能被1减,因为它是外人

————

cosa/sina=cota(会常用到)

————

tan方a+1=sec方a       cot方a+1=sec方a

正切对正割  余切对余割

 

 

 

2.换元法

(1)第一换元法(凑微分法)

考验的是函数的构造能力,也就是“凑”的能力

其实也密切运用到了直接积分法,所以两个方法并非割裂,而是递进。

 

(2)第二换元法(应用于连续导数,其实就复合函数)

 3.分部积分法

(1)常用情况下,是“反对幂指三”

(2)特殊情况下要根据实际情况来判断(比如“消项”的情况)

(3)实战下来,一个不定积分至少要用到两次分部积分法

4.有理函数的不定积分

(1)应用范围:

被积函数的分母

无论如何转化,

都不可以被直接积分,

这时候就要用到不定积分

(2)操作方法:

无论假分式和真分式,最后都要拆成和的形式

 5.三角函数有理式的不定积分

应用范围:一个函数里只包含了sinx和cosx

这个时候,可以尝试用万能代换式直接暴解。

 总结:

(1)直接积分法:

是老祖宗,任何不定积分最后一步想要转换成自然式,都要用到它。

它和其他方法是递进与被递进的关系,而非割裂关系

(2)换元法

用于处理复合函数

(3)分部积分法

用于处理不同类型函数的组合

(4)有理函数积分

直接积分法不行时,就用它

(5)三角函数有理式的不定积分

只包含sinx,cosx时,就用它。

————

下节内容,直接讲例题进行应用。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值