maskrcnn_benchmark 代码详解之 inference.py

本文详细介绍了MaskRCNN_benchmark库中的inference.py文件,该文件负责在目标检测任务中执行边框预测的最后步骤,以得出最终的预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

     在MaskRCNN、FasterRCNN的最后阶段需要对边框进行一次最后的预测,得到最终的预测边框。在maskrcnn_benchmark中,这一操作由inference.py来完成。其代码详解为:

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn

from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.modeling.box_coder import BoxCoder


class PostProcessor(nn.Module):
    """
    From a set of classification scores, box regression and proposals,
    computes the post-processed boxes, and applies NMS to obtain the
    final results
    从一系列的分类得分,边框回归以及与之相对应的预测边框中计算出最终预测的边框,并使用
    非极大线性抑制(NMS)来得到最终边框
    """

    def __init__(
        self,
        score_thresh=0.05,
        nms=0.5,
        detections_per_img=100,
        box_coder=None,
        cls_agnostic_bbox_reg=False
    ):
        """
        Arguments:
            score_thresh (float)分类得分的阈值
            nms (float)非极大线性抑制(NMS)的阈值
            detections_per_img (int)每张图片中检测的目标数
            box_coder (BoxCoder)边框编码器,用于计算边框偏差与获得预测边框
        """
        super(PostProcessor, self).__init__()
        # 将参数保存为私有属性
        self.score_thresh = score_thresh
        self.nms = nms
        self.detections_per_img = detections_per_img
        if box_coder is None:
            box_coder = BoxCoder(weights=(10., 10., 5., 5.))
        self.box_coder = box_coder
        self.cls_agnostic_bbox_reg = cls_agnostic_bbox_reg

    def forward(self, x, boxes):
        """
        参数:
            x (tuple[tensor, ten
# Ultralytics YOLO 🚀, AGPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training task: detect # (str) YOLO task, i.e. detect, segment, classify, pose mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark # Train settings ------------------------------------------------------------------------------------------------------- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml data: # (str, optional) path to data file, i.e. coco128.yaml epochs: 200 # (int) number of epochs to train for patience: 300 # (int) epochs to wait for no observable improvement for early stopping of training batch: 2 # (int) number of images per batch (-1 for AutoBatch) imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes save: True # (bool) save train checkpoints and predict results save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) cache: True # (bool) True/ram, disk or False. Use cache for data loading device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers: 0 # (int) number of worker threads for data loading (per RANK if DDP) project: # (str, optional) project name name: # (str, optional) experiment name, results saved to 'project/name' directory exist_ok: False # (bool) whether to overwrite existing experiment pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose: True # (bool) whether to print verbose output seed: 0 # (int) random seed for reproducibility deterministic: True # (bool) whether to enable deterministic mode single_cls: False # (bool) train multi-class data as single-class rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' cos_lr: False # (bool) use cosine learning rate scheduler close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) resume: False # (bool) resume training from last checkpoint amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training # Segmentation overlap_mask: True # (bool) masks should overlap during training (segment train only) mask_ratio: 4 # (int) mask downsample ratio (segment train only) # Classification dropout: 0.0 # (float) use dropout regularization (classify train only) # Val/Test settings ---------------------------------------------------------------------------------------------------- val: True # (bool) validate/test during training split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' save_json: False # (bool) save results to JSON file save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou: 0.7 # (float) intersection over union (IoU) threshold for NMS max_det: 300 # (int) maximum number of detections per image half: False # (bool) use half precision (FP16) dnn: False # (bool) use OpenCV DNN for ONNX inference plots: True # (bool) save plots during train/val # Prediction settings -------------------------------------------------------------------------------------------------- source: # (str, optional) source directory for images or videos show: False # (bool) show results if possible save_txt: False # (bool) save results as .txt file save_conf: False # (bool) save results with confidence scores save_crop: False # (bool) save cropped images with results show_labels: True # (bool) show object labels in plots show_conf: True # (bool) show object confidence scores in plots vid_stride: 1 # (int) video frame-rate stride stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) line_width: # (int, optional) line width of the bounding boxes, auto if missing visualize: False # (bool) visualize model features augment: False # (bool) apply image augmentation to prediction sources agnostic_nms: False # (bool) class-agnostic NMS classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] retina_masks: False # (bool) use high-resolution segmentation masks boxes: True # (bool) Show boxes in segmentation predictions # Export settings ------------------------------------------------------------------------------------------------------ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats keras: False # (bool) use Kera=s optimize: False # (bool) TorchScript: optimize for mobile int8: False # (bool) CoreML/TF INT8 quantization dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes simplify: False # (bool) ONNX: simplify model opset: # (int, optional) ONNX: opset version workspace: 4 # (int) TensorRT: workspace size (GB) nms: False # (bool) CoreML: add NMS # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf: 0.01 # (float) final learning rate (lr0 * lrf) momentum: 0.937 # (float) SGD momentum/Adam beta1 weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) warmup_momentum: 0.8 # (float) warmup initial momentum warmup_bias_lr: 0.1 # (float) warmup initial bias lr box: 7.5 # (float) box loss gain cls: 0.5 # (float) cls loss gain (scale with pixels) dfl: 1.5 # (float) dfl loss gain pose: 12.0 # (float) pose loss gain kobj: 1.0 # (float) keypoint obj loss gain label_smoothing: 0.0 # (float) label smoothing (fraction) nbs: 64 # (int) nominal batch size hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction) hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction) hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) degrees: 0.0 # (float) image rotation (+/- deg) translate: 0.1 # (float) image translation (+/- fraction) scale: 0.5 # (float) image scale (+/- gain) shear: 0.0 # (float) image shear (+/- deg) perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # (float) image flip up-down (probability) fliplr: 0.5 # (float) image flip left-right (probability) mosaic: 1.0 # (float) image mosaic (probability) mixup: 0.0 # (float) image mixup (probability) copy_paste: 0.0 # (float) segment copy-paste (probability) # Custom config.yaml --------------------------------------------------------------------------------------------------- cfg: # (str, optional) for overriding defaults.yaml # Tracker settings ------------------------------------------------------------------------------------------------------ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml] 这段代码什么意思
最新发布
05-12
<think>好的,我现在需要帮用户理解Ultralytics YOLO配置文件的参数和功能。用户之前已经询问过YOLOv8的损失函数,现在想进一步了解配置文件中的各个参数,包括训练、验证、预测和导出设置,以及超参数的意义。用户还提到了参考站内的引用,其中引用了官方文档和参数详解的内容,但用户指出这些引用仅供参考,并不是真正的需求,所以需要更多结合之前的问题和回答来分析。 首先,我需要回忆YOLO的配置文件结构。通常,YAML文件用于配置模型训练和验证的各种参数。用户提到的配置文件可能包括模型结构、数据路径、训练参数、优化器设置、数据增强、验证设置、预测选项、导出配置等部分。我需要逐一解释这些部分的关键参数。 接下来,用户之前的问题涉及到损失函数的调整,因此在解释配置文件时,可能需要关联到损失函数相关的参数,比如损失权重(cls、box、dfl)以及对应的超参数调整。此外,用户可能对如何通过修改配置文件来优化模型性能感兴趣,例如调整学习率、优化器类型、数据增强强度等。 需要注意的是,用户引用了官方文档中的安装命令和参数说明,但用户的实际需求是理解配置文件的具体参数含义,因此需要详细解释每个部分的作用,而不仅仅是安装步骤。比如,训练部分中的epochs、batch、imgsz、device等参数,以及验证中的save_json、conf等参数的意义。 此外,用户可能希望了解如何根据不同的任务需求调整这些参数,例如在训练时如何选择优化器,如何设置学习率调度,或者在验证时如何保存结果。同时,超参数部分如lr0、lrf、momentum、weight_decay等的作用也需要详细说明,以帮助用户进行调优。 最后,用户可能希望了解导出设置中的格式选项,比如如何将模型导出为ONNX或TensorRT格式,以及这些格式的适用场景。需要确保解释清晰,帮助用户根据实际应用选择合适的导出格式。 总结来说,我需要将配置文件分为几个主要部分,分别详细解释每个参数的功能和推荐值,同时结合用户之前关于损失函数的问题,指出哪些参数可能影响模型训练的效果和性能。此外,提供实际修改示例和注意事项,帮助用户避免常见错误,确保配置调整的有效性。</think>以下是对Ultralytics YOLO配置文件(`*.yaml`)参数的系统解析,结合代码实现逻辑与最佳实践: --- ### 一、核心配置模块 配置文件采用**模块化层级设计**,主要包含以下6大功能域: ```yaml # ultralytics/cfg/default.yaml 示例 task: detect # 任务类型 (detect/segment/classify/pose) mode: train # 运行模式 (train/val/predict/export) model: yolov8n.yaml# 模型架构配置文件 data: coco128.yaml # 数据集配置文件 ... ``` --- ### 二、训练参数详解 #### 1. 基础设置 ```yaml train: epochs: 100 # 训练总轮次 batch: 16 # 批次大小 (根据显存调整) imgsz: 640 # 输入图像尺寸 save: True # 保存检查点 device: 0 # 设备选择 (0=GPU0, 'cpu'=CPU) workers: 8 # 数据加载线程数 pretrained: True # 是否加载预训练权重[^1] ``` #### 2. 优化器配置 ```yaml optimizer: name: auto # 自动选择(SGD/Adam/AdamW) lr0: 0.01 # 初始学习率 lrf: 0.01 # 最终学习率(lr0*lrf) momentum: 0.937 # SGD动量参数 weight_decay: 0.0005 # L2正则化系数 ``` #### 3. 数据增强 ```yaml augment: hsv_h: 0.015 # 色调增强幅度 hsv_s: 0.7 # 饱和度增强幅度 hsv_v: 0.4 # 明度增强幅度 degrees: 0.0 # 旋转角度范围 translate: 0.1 # 平移比例 scale: 0.5 # 缩放比例 shear: 0.0 # 剪切幅度 perspective: 0.0 # 透视变换系数 flipud: 0.0 # 上下翻转概率 fliplr: 0.5 # 左右翻转概率 ``` --- ### 三、验证/预测配置 #### 1. 验证参数 ```yaml val: split: val # 数据集划分方式(val/test/train) save_json: False # 是否保存JSON格式结果 conf: 0.001 # 置信度阈值 iou: 0.6 # NMS的IoU阈值 plots: True # 生成可视化图表[^2] ``` #### 2. 预测参数 ```yaml predict: source: # 输入源 (文件/目录/URL等) show: False # 实时显示预测结果 save_txt: False # 保存标签文本 save_conf: False # 保存置信度分数 save_crop: False # 保存裁剪的检测目标 ``` --- ### 四、模型导出设置 ```yaml export: format: onnx # 导出格式 (onnx/torchscript/coreml) half: False # FP16量化 dynamic: False # ONNX动态轴 simplify: True # ONNX简化优化 opset: 12 # ONNX算子版本 workspace: 4 # TensorRT工作空间大小(GB) ``` --- ### 五、关键超参数解析 | 参数 | 作用域 | 推荐范围 | 影响维度 | |-------|--------|----------|----------| | `box` | 损失权重 | 5.0-7.5 | 定位精度 | | `cls` | 分类损失权重 | 0.3-0.7 | 分类准确率 | | `dfl` | 分布损失权重 | 1.0-2.0 | 边界框平滑度 | | `anchors` | 锚点数量 | 3-5 | 小目标检测能力 | | `warmup_epochs` | 热身阶段 | 1-3 | 训练稳定性 | --- ### 六、配置文件修改实践 1. **多GPU训练配置** ```yaml device: 0,1,2,3 # 使用4块GPU batch: 64 # 总batch=GPU数*单卡batch ``` 2. **学习率调度策略** ```yaml lr0: 0.01 lrf: 0.2 # 余弦退火调度:lr0 -> lr0*lrf ``` 3. **自定义数据增强** ```yaml augment: mosaic: 1.0 # 马赛克增强概率 mixup: 0.2 # MixUp混合增强概率 copy_paste: 0.5 # 目标复制粘贴增强 ``` --- ### 七、调试建议 1. 使用`python train.py --cfg default.yaml`验证配置有效性 2. 监控显存占用与`batch`大小的关系:`nvidia-smi -l 1` 3. 可视化数据增强效果: ```python from ultralytics import YOLO model = YOLO('yolov8n.yaml') model.train(data='coco128.yaml', augment=True) ``` --- ### 相关问题 1. 如何根据硬件配置调整batch size和workers数量? 2. YOLOv8支持哪些类型的自定义数据增强? 3. 导出ONNX模型时遇到算子不支持问题如何解决?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值