数字之魅-----数字中的技巧之求二进制数中1的个数

阶乘(Factorial)是个很有意思的函数,但是不少人都比较怕它,我们来看看两个与阶乘相关的问题:

       1.   给定一个整数N,那么N的阶乘N!末尾有多少个0呢?例如:N=10,N!=3 628 800,N!的末尾有两个0。

       2.   求N!的二进制表示中最低位1的位置。

答案:

有些人碰到这样的题目会想:是不是要完整计算出N!的值?如果溢出怎么办?事实上,如果我们从“哪些数相乘能得到10”这个角度来考虑,问题就变得简单了。

首先考虑,如果N!= K×10M,且K不能被10整除,那么N!末尾有M个0。再考虑对N!进行质因数分解,N!=(2x)×(3y)×(5z)…,由于10 = 2×5,所以M只跟XZ相关,每一对2和5相乘可以得到一个10,于是M = min(XZ)。不难看出X大于等于Z,因为能被2整除的数出现的频率比能被5整除的数高得多,所以把公式简化为M = Z

根据上面的分析,只要计算出Z的值,就可以得到N!末尾0的个数。

【问题1的解法一】

要计算Z,最直接的方法,就是计算i=1, 2, …, N)的因式分解中5的指数,然后求和:

代码清单2-6


ret = 0;

for(i = 1; i <= N; i++)

{

    j = i;

    while(j % 5 ==0)

    {

        ret++;

        j /= 5;

    }

}


【问题1的解法二】

公式:Z = [N/5] +[N/52] +[N/53] + …(不用担心这会是一个无穷的运算,因为总存在一个K,使得5K > N,[N/5K]=0。)

公式中,[N/5]表示不大于N的数中5的倍数贡献一个5,[N/52]表示不大于N的数中52的倍数再贡献一个5,……代码如下:

ret = 0;

while(N)

{

    ret += N / 5;

    N /= 5;

}

问题2要求的是N!的二进制表示中最低位1的位置。给定一个整数N,求N!二进制表示的最低位1在第几位?例如:给定N = 3,N!= 6,那么N!的二进制表示(1 010)的最低位1在第二位。

为了得到更好的解法,首先要对题目进行一下转化。

首先来看一下一个二进制数除以2的计算过程和结果是怎样的。

把一个二进制数除以2,实际过程如下:

判断最后一个二进制位是否为0,若为0,则将此二进制数右移一位,即为商值(为什么);反之,若为1,则说明这个二进制数是奇数,无法被2整除(这又是为什么)。

所以,这个问题实际上等同于求N!含有质因数2的个数。即答案等于N!含有质因数2的个数加1。

【问题2的解法一】

由于N! 中含有质因数2的个数,等于 N/2 + N/4 + N/8 + N/16 + …[1],

根据上述分析,得到具体算法,如下所示:

代码清单2-7


int lowestOne(int N)

{

    int Ret = 0; 

    while(N)

     {

        N >>= 1;

         Ret += N;

     }

    return Ret;

 }


【问题2的解法二】

N!含有质因数2的个数,还等于N减去N的二进制表示中1的数目。我们还可以通过这个规律来求解。

下面对这个规律进行举例说明,假设 N = 11011,那么N!中含有质因数2的个数为 N/2 + N/4 + N/8 + N/16 + …

即: 1101 + 110 + 11 + 1

                    =(1000 + 100 + 1)

                    +(100 + 10)

                    +(10 + 1)

                    + 1

                    =(1000 + 100+ 10 + 1)+(100 + 10 + 1)+ 1

                    = 1111 + 111 + 1

                    =(10000 -1)+(1000 - 1)+(10-1)+(1-1)

                    = 11011-N二进制表示中1的个数

小结

任意一个长度为m的二进制数N可以表示为N = b[1] + b[2] * 2 + b[3] * 22 + … + b[m] * 2(m-1),其中b [ i ]表示此二进制数第i位上的数字(1或0)。所以,若最低位b[1]为1,则说明N为奇数;反之为偶数,将其除以2,即等于将整个二进制数向低位移一位。

posted @ 2012-01-30 21:06 叶梅树 阅读(42) 评论(0)  编辑

问题描述

任意给定一个32位无符号整数n,求n的二进制表示中1的个数,比如n = 5(0101)时,返回2,n = 15(1111)时,返回4

这也是一道比较经典的题目了,相信不少人面试的时候可能遇到过这道题吧,下面介绍了几种方法来实现这道题,相信很多人可能见过下面的算法,但我相信很少有人见到本文中所有的算法。如果您上头上有更好的算法,或者本文没有提到的算法,请不要吝惜您的代码,分享的时候,也是学习和交流的时候。

普通法

我总是习惯叫普通法,因为我实在找不到一个合适的名字来描述它,其实就是最简单的方法,有点程序基础的人都能想得到,那就是移位+计数,很简单,不多说了,直接上代码,这种方法的运算次数与输入n最高位1的位置有关,最多循环32次。

int  BitCount(unsigned  int  n)
{
unsigned 
int  c  = 0  ;  //  计数器
while  (n  > 0 )
{
if ((n  & 1 == 1 //  当前位是1
++ c ;  //  计数器加1
>>= 1  ;  //  移位
}
return  c ;
}

一个更精简的版本如下

int  BitCount1(unsigned  int  n)
{
unsigned 
int  c  = 0  ;  //  计数器
for  (c  = 0 ; n; n  >>= 1 //  循环移位
+=  n  & 1  ;  //  如果当前位是1,则计数器加1
return  c ;
}

 快速法

这种方法速度比较快,其运算次数与输入n的大小无关,只与n中1的个数有关。如果n的二进制表示中有k个1,那么这个方法只需要循环k次即可。其原理是不断清除n的二进制表示中最右边的1,同时累加计数器,直至n为0,代码如下

int  BitCount2(unsigned  int  n)
{
unsigned 
int  c  = 0  ;
for  (c  = 0 ; n;  ++ c)
{
&=  (n  - 1 ) ;  //  清除最低位的1
}
return  c ;
}

为什么n &= (n – 1)能清除最右边的1呢?因为从二进制的角度讲,n相当于在n - 1的最低位加上1。举个例子,8(1000)= 7(0111)+ 1(0001),所以8 & 7 = (1000)&(0111)= 0(0000),清除了8最右边的1(其实就是最高位的1,因为8的二进制中只有一个1)。再比如7(0111)= 6(0110)+ 1(0001),所以7 & 6 = (0111)&(0110)= 6(0110),清除了7的二进制表示中最右边的1(也就是最低位的1)。

查表法

动态建表

由于表示在程序运行时动态创建的,所以速度上肯定会慢一些,把这个版本放在这里,有两个原因

1. 介绍填表的方法,因为这个方法的确很巧妙。

2. 类型转换,这里不能使用传统的强制转换,而是先取地址再转换成对应的指针类型。也是常用的类型转换方法。

int  BitCount3(unsigned  int  n) 

//  建表
unsigned  char  BitsSetTable256[ 256 =  { 0 } ; 

//  初始化表 
for  ( int  i  = 0 ; i  < 256 ; i ++

BitsSetTable256[i] 
=  (i  & 1 +  BitsSetTable256[i  / 2 ]; 


unsigned 
int  c  = 0  ; 

//  查表
unsigned  char *  p  =  (unsigned  char * & n ; 

=  BitsSetTable256[p[ 0 ]]  +  
BitsSetTable256[p[
1 ]]  +  
BitsSetTable256[p[
2 ]]  +  
BitsSetTable256[p[
3 ]]; 

return  c ; 
}

先说一下填表的原理,根据奇偶性来分析,对于任意一个正整数n

1.如果它是偶数,那么n的二进制中1的个数与n/2中1的个数是相同的,比如4和2的二进制中都有一个1,6和3的二进制中都有两个1。为啥?因为n是由n/2左移一位而来,而移位并不会增加1的个数。

2.如果n是奇数,那么n的二进制中1的个数是n/2中1的个数+1,比如7的二进制中有三个1,7/2 = 3的二进制中有两个1。为啥?因为当n是奇数时,n相当于n/2左移一位再加1。

再说一下查表的原理

对于任意一个32位无符号整数,将其分割为4部分,每部分8bit,对于这四个部分分别求出1的个数,再累加起来即可。而8bit对应2^8 = 256种01组合方式,这也是为什么表的大小为256的原因。

注意类型转换的时候,先取到n的地址,然后转换为unsigned char*,这样一个unsigned int(4 bytes)对应四个unsigned char(1 bytes),分别取出来计算即可。举个例子吧,以87654321(十六进制)为例,先写成二进制形式-8bit一组,共四组,以不同颜色区分,这四组中1的个数分别为4,4,3,2,所以一共是13个1,如下面所示。

10000111 01100101 01000011 00100001 = 4 + 4 + 3 + 2 = 13

静态表-4bit

原理和8-bit表相同,详见8-bit表的解释

int  BitCount4(unsigned  int  n)
{
unsigned 
int  table[ 16 =  
{
0 1 1 2
1 2 2 3
1 2 2 3
2 3 3 4
} ;

unsigned 
int  count  = 0  ;
while  (n)
{
count 
+=  table[n  & 0xf ] ;
>>= 4  ;
}
return  count ;
}

静态表-8bit

首先构造一个包含256个元素的表table,table[i]即i中1的个数,这里的i是[0-255]之间任意一个值。然后对于任意一个32bit无符号整数n,我们将其拆分成四个8bit,然后分别求出每个8bit中1的个数,再累加求和即可,这里用移位的方法,每次右移8位,并与0xff相与,取得最低位的8bit,累加后继续移位,如此往复,直到n为0。所以对于任意一个32位整数,需要查表4次。以十进制数2882400018为例,其对应的二进制数为10101011110011011110111100010010,对应的四次查表过程如下:红色表示当前8bit,绿色表示右移后高位补零。

第一次(n & 0xff)             10101011110011011110111100010010

第二次((n >> 8) & 0xff)  00000000101010111100110111101111

第三次((n >> 16) & 0xff00000000000000001010101111001101

第四次((n >> 24) & 0xff00000000000000000000000010101011

int  BitCount7(unsigned  int  n)

unsigned 
int  table[ 256 =  

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5
1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5
2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6
1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5
2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6
2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6
3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7
1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5
2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6
2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6
3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7
2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6
3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7
3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7
4 5 5 6 5 6 6 7 5 6 6 7 6 7 7 8
}; 

return  table[n  & 0xff +
table[(n 
>> 8 & 0xff +
table[(n 
>> 16 & 0xff +
table[(n 
>> 24 & 0xff ] ;
}

当然也可以搞一个16bit的表,或者更极端一点32bit的表,速度将会更快。

平行算法

网上都这么叫,我也这么叫吧,不过话说回来,的确有平行的意味在里面,先看代码,稍后解释

int  BitCount4(unsigned  int  n) 

=  (n  & 0x55555555 +  ((n  >> 1 & 0x55555555 ) ; 
=  (n  & 0x33333333 +  ((n  >> 2 & 0x33333333 ) ; 
=  (n  & 0x0f0f0f0f +  ((n  >> 4 & 0x0f0f0f0f ) ; 
=  (n  & 0x00ff00ff +  ((n  >> 8 & 0x00ff00ff ) ; 
=  (n  & 0x0000ffff +  ((n  >> 16 & 0x0000ffff ) ; 

return  n ; 
}

速度不一定最快,但是想法绝对巧妙。 说一下其中奥妙,其实很简单,先将n写成二进制形式,然后相邻位相加,重复这个过程,直到只剩下一位。

以217(11011001)为例,有图有真相,下面的图足以说明一切了。217的二进制表示中有5个1

完美法

int  BitCount5(unsigned  int  n) 
{


unsigned inttmp 
=  n  -  ((n  >> 1 & 033333333333 -  ((n  >> 2 & 011111111111 );
return  ((tmp  +  (tmp  >> 3 ))  & 030707070707 % 63 ;
}

最喜欢这个,代码太简洁啦,只是有个取模运算,可能速度上慢一些。区区两行代码,就能计算出1的个数,到底有何奥妙呢?为了解释的清楚一点,我尽量多说几句。

第一行代码的作用

先说明一点,以0开头的是8进制数,以0x开头的是十六进制数,上面代码中使用了三个8进制数。

将n的二进制表示写出来,然后每3bit分成一组,求出每一组中1的个数,再表示成二进制的形式。比如n = 50,其二进制表示为110010,分组后是110和010,这两组中1的个数本别是2和3。2对应010,3对应011,所以第一行代码结束后,tmp = 010011,具体是怎么实现的呢?由于每组3bit,所以这3bit对应的十进制数都能表示为2^2 * a + 2^1 * b + c的形式,也就是4a + 2b + c的形式,这里a,b,c的值为0或1,如果为0表示对应的二进制位上是0,如果为1表示对应的二进制位上是1,所以a + b + c的值也就是4a + 2b + c的二进制数中1的个数了。举个例子,十进制数6(0110)= 4 * 1 + 2 * 1 + 0,这里a = 1, b = 1, c = 0, a + b + c = 2,所以6的二进制表示中有两个1。现在的问题是,如何得到a + b + c呢?注意位运算中,右移一位相当于除2,就利用这个性质!

4a + 2b + c 右移一位等于2a + b

4a + 2b + c 右移量位等于a

然后做减法

4a + 2b + c –(2a + b) – a = a + b + c,这就是第一行代码所作的事,明白了吧。

第二行代码的作用

在第一行的基础上,将tmp中相邻的两组中1的个数累加,由于累加到过程中有些组被重复加了一次,所以要舍弃这些多加的部分,这就是&030707070707的作用,又由于最终结果可能大于63,所以要取模。

需要注意的是,经过第一行代码后,从右侧起,每相邻的3bit只有四种可能,即000, 001, 010, 011,为啥呢?因为每3bit中1的个数最多为3。所以下面的加法中不存在进位的问题,因为3 + 3 = 6,不足8,不会产生进位。

tmp + (tmp >> 3)-这句就是是相邻组相加,注意会产生重复相加的部分,比如tmp = 659 = 001 010 010 011时,tmp >> 3 = 000 001 010 010,相加得

001 010 010 011

000 001 010 010

---------------------

001 011 100 101

001 + 101 = 1 + 5 = 6,所以659的二进制表示中有6个1

注意我们想要的只是第二组和最后一组(绿色部分),而第一组和第三组(红色部分)属于重复相加的部分,要消除掉,这就是&030707070707所完成的任务(每隔三位删除三位),最后为什么还要%63呢?因为上面相当于每次计算相连的6bit中1的个数,最多是111111 = 77(八进制)= 63(十进制),所以最后要对63取模。

位标志法

感谢网友 gussing提供

struct  _byte 

unsigned a:
1
unsigned b:
1
unsigned c:
1
unsigned d:
1
unsigned e:
1
unsigned f:
1
unsigned g:
1
unsigned h:
1
}; 

long  get_bit_count( unsigned  char  b ) 
{
struct  _byte  * by  =  ( struct  _byte * ) & b; 
return  (by -> a + by -> b + by -> c + by -> d + by -> e + by -> f + by -> g + by -> h); 
}

指令法

感谢网友 Milo Yip提供

使用微软提供的指令,首先要确保你的CPU支持SSE4指令,用Everest和CPU-Z可以查看是否支持。

unsigned  int  n  = 127  ;
unsigned 
int  bitCount  =  _mm_popcnt_u32(n) ;

 


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值