最长上升子序列(LIS)

暴力会达到O(n^{2})的复杂度,这里我们采用贪心+二分的算法,将时间复杂度降到O(logn)


思路

a数组存放当前输入的数,新建一个b数组用于维护最长上升子序列,b[i]表示现在最长上升子序列长度为i,它的最后一位元素为b[i]。我们每次都希望b数组的最后一位元素最小,这样我们就能加入更多的数进入b数组。所以,如果新加入元素大于b数组最后一位元素,直接加入;否则,我们用a[i]更新b数组,在b[i]中找到第一个大于等于a[i]的数,更新b数组。

查找a[i]在b数组的位置我们用二分查找,c++可以直接用lower_bound函数。


样例

对于a[]={10,9,2,5,3,7,101,18}

b[1]=10;

i=2时,9<10,所以我们用9去更新b数组,此时b[1]=9;

i=3时,2<9,用2更新9,此时b[1]=2;

i=4时,5>2,将5加入b数组,b[1]=2,b[2]=5;

以此类推,我们最终得到的b[]={2,3,7,101},长度为4


实现

int n;
	scanf("%d", &n);
	int a[maxn], b[maxn];
	for (int i = 0; i < n; i++)
		scanf("%d", &a[i]);
	int len = 1;
	b[len] = a[0];
	for (int i = 1; i < n; i++)
	{
		if (a[i] > b[len])
			b[++len] = a[i];
		else
		{
			int pos = lower_bound(b + 1, b + len + 1, a[i]) - b;
			b[pos] = a[i];
		}
	}
	printf("最长上升子序列长度为:%d ", len);

附言

对于一个序列,最长上升子序列和最长下降子序列长度是等价的,所以如果我们不方便求某一个要求长度时可以求另外一个。比如我们求a[]={10,9,2,5,3,7,101,18}的最长上升子序列,但是起点不定,这样相当于求a[]={18,101,7,3,5,2,9,10}末尾不定的最长下降子序列,所以答案变得简单。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值