世界上最励志、最传奇的创业家Elon Musk的一天

Elon Musk现在是世界上最励志、最传奇的创业家。他正经营着两家改变世界的公司,北美知名电动汽车生产商Tesla和私人航天探索公司SpaceX。同时他也是SolarCity的主席,为家庭用户提供太阳能的服务。他还是PayPal的早期投资人。

Musk 一直把他的时间掰给两家公司,周一和周四他会呆在SpaceX的洛杉矶总部,周二和周三会前往加州海湾区的Tesla,星期五两家公司都会去,当然SpaceX的办公室周围也设置了Tesla的设计办事处。

如果你对Musk不熟悉,提这个你肯定有印象,他是eBay15亿收购PayPal时变成富翁的,跟其他变得富有的高管不同,他没有继续呆在互联网行业。

他把收购所得的钱用在了自己的两家新公司上。4年前Tesla的运营资金只剩最后几美元了, 但是他把自己的钱投进去了,因此还差点破产,本来他可以放弃挽救这家公司的,但他选择了背水一战。现在Tesla是一家市值32.1亿美元的上市公司,其最新的汽车Model S马上就要震撼出场了。另一家公司,Space X,刚刚发射了一枚火箭到太空。

这就是我们认为为什么他是最励志、最传奇的创业家,他敢于直面巨大的问题,不惜冒着巨大的个人风险,敢于尝试别人不敢做的事业。下面来看看他的一天是怎么度过的。

1. 这是早晨从 Musk海湾区的家拍摄的照片,时间是7:30—8:00,景色非常美吧。

2. 然后他开着自己的Model S(高性能电动汽车Model S于今年6月震撼发布 驶向Space X的办公室。

3. 上午10:00的时候,他打了几个电话,跟Space X通信和市场副总裁Katherine Nelson通了一个电话,其它晨间电话还包括给记者的、求职者的,还有两个公司内部的会议电话。

4. 10:45,Musk跟他的工程师团队开了一次猎鹰9号发射器的会议。他的助理在旁提示他,这是发射器本周的进程报告,报告了SpaceX的下一步计划(结构、进程 产量、发射操纵步骤、 航空和电子设备工程师都出席了那个会议。)

5. 这就是猎鹰9号发射器,所以上面这个会议是相当重要的。

6. 12:30,是一个推进安排会议,包括引擎生产、多个引擎现阶段实验结果。

7. 午餐时间,Musk吃的是炸鸡、蔬菜、色拉,一般情况下他会去附近的餐馆,但今天的午餐他得和设施工作人员谈论操作施工、改进、待解决的空间设施要求。

8. Musk去火箭工厂的时候顺便视察了工程组的情况。

9. 晚上,他接受了PandoDaily Sarah Lacy的采访,下面是晚上7:00的时候,他“插着翅膀”等待介绍。

10. 4:30, Mkusk 在视察他的火箭工厂。

11. 接受采访时的视屏,谈了关于他毁了一辆300万美元的汽车的经历。

12. 这天最后Musk和电影里Time of Cholera at WME in Beverly Hills的棒球运动员合影,他是这部电影的执行制片人之一,这部电影是关于海地霍乱蔓延的题材。

Via BI

 供雷锋网专稿,转载请注明来自雷锋网及作者,并链回本页)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值