论壁垒

       壁垒是前线的第一道墙,它是高大的,厚实的。要忍耐敌人的一波波冲击。我们学习的过程就是在攻破壁垒的过程,同样,壁垒的两边便怀有了各自的立场,天然的敌对者。学习知识有壁垒,早在《送东阳马生序》中宋濂回忆皓首穷经起,书籍的价值远不止竹笺笔砚,而是上面承载的知识带给它本身的重量。今日的csdn是程序员交流的一个很好的平台,和Github可以互为补充,可是今日的知识仍是宝贵的,今日的知识仍是有壁垒的。只是这壁垒的维度发生了变化,总体是比以往变薄了。这壁垒不单在于别人是否愿意花时间心力将知识深入简出杂糅自己的理解教授于你,更难的在于你本身是否能在知识的时效性内很好地掌握其。若你是一个在这方面更无深入涉猎的人,你没有对该方面知识理解更深于老师的能力。只有迁移学习或者是更加广泛地涉猎学习,由此及面,向更多的“老师”请教。今天的尖端领域的知识无疑是晦涩难以理解的,且不论古代的贤者大儒穿越今天如何理解高等函数与矩阵变化,单单是今天已经在学科领域最前沿的带头人,可能明早也要被新的知识吓一跳。

        机器学习把实验室的内容推向另一个方向,我想称之为有些“玄学”的,训练实验。通过带有三“V”(最重要的可能却是三“V”之外的第四“V”,valueless没有价值)特征的大数据,能分析大量数据的内涵与关系,并准确画像。这确实超出了人类数千年来的想象,直至这一时代才降临。实验本身的字面“动手实验”数个汉字在该方面似乎只变成了数据处理和搜集,虽然毋庸置疑这方面也是极具挑战性和亟待深入,但该方法彻彻底底地是有成效,有突破的。人和机器之间,应该说和最简单的电路信号之间的壁垒在此刻被一块块敲裂,我们在做到“机器像人一样去思考”之前,笨拙地去学习“机器与机器,电路和电路,信号并信号”的语言与方式。

       但所有的机器学习在今天无法理解另一悖论“感恩节前的火鸡”。简要的说如果你是火鸡群中的贤者,但是在你有限的生命之中(假设鸡群中没有鸡经历过上次感恩节也没有相关记载),你无法理解接下来的感恩节对你和你的族群来说意味着什么。这是火鸡和感恩节之间的壁垒,我们更有智慧的老祖宗管起叫天数、命数、命理。用今天的时代发展来看,这来源于时代的变化和个人对发展机遇的把握与理解。现在大家都知道不能空头努力了,得用发展的眼光,有所选择的去把握可能促进你飞跃的节点,“贵人”是一类的代表,“好日子”是另一类。这些其实都是可以理解的,不同于自然规律,在马克思的体系中他们叫做社会发展规律。

      既然其是规律就能掌握,那么何来的壁垒呢,或者说壁垒背后与我们对立的是谁呢?其实这转了一圈。来到了另一个壁垒的门前,社会的阶级壁垒。中国不同于印度受囿于种姓制度,中国的户籍制度可能是今日很多学生踏出校门要面对的第一道难关,但这不同于阶级壁垒。那有人问了现在房价高涨,北上广深宁杭蓉的一套房要掏空了我们的家底,动我家的“六个钱包”才能爬上车,能把简单的有房与否,有值钱的房与否看作是阶级壁垒的门吗?这个问题是现实的的,也是我们这一代人特色需要面临的,相信以后会和“下岗潮”被子孙辈一遍遍提起。我这里的回答是今天来看是的,长远来看不确定,不确定来源于何处?不确定来源于这些房子的属性。房子永远不是生产资料,那有房者可能也是站在无产阶级那一边,但他们或是倾向了另一侧,地主阶级。他们坐拥于数套房之上,用“自己努力的成果”打压无房者,收取高额的收入,享受房价上涨的红利。但是自己的房永远不会产出粮食,甚至不能作为生产资料(大地主阶级性质的企业等以土地为生产资料平地起高楼)。

      很多人通过这一波的房价高涨将自己的积蓄劳动成果尽数交出,那么下一波“高歌的房产”又会在哪里呢?我想做几个预言,留给时间检验。1.今后的税率会上升,包括表面减免,但是税种增加或者是税收内容调整来到达这一目的。2.全球货币周期性的贬值,在石油为重产业,不单用于能源更用于化工生产时的现代社会,“金圆券”的再度出现可能不是梦景。3.繁重的“徭役”,不同于古代需要征用民力去大兴土木,我国暂时也不需要大量的兵役补充,但这一点可能却是真的会存在,包括办事填表的“逆便捷”,志愿服务的重视以及对文化建设的加大力度,事实上使大伙儿的力往一处使了。4.商人领袖的逐渐淡化,未来的三十五十年可能不再如今日的商海,各种如雷贯尔的名字频繁出现。大的母公司持有高股份却隐在幕后,人们的生活被几家人包揽安排,跨不过越来越高的壁垒。

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值