![](https://i-blog.csdnimg.cn/columns/default/20201014180756927.png?x-oss-process=image/resize,m_fixed,h_224,w_224)
机器学习和模式识别
leizh007
这个作者很懒,什么都没留下…
展开
-
CS229作业一第二题
之前没学过Matlab,所以第一题的代码直接看的答案,看完之后熟悉了Matlab的写作习惯,第二题顺利自己搞定。题目地址:http://cs229.stanford.edu/materials.htmlMatlab代码:x=load('q2x.dat');y=load('q2y.dat');x=[ones(size(x,1),1) x];theta=pinv(x'*x)*x'*y原创 2013-07-27 22:57:32 · 509 阅读 · 0 评论 -
PRML学习笔记之Neural Nerwork(神经网络)
1. Feed-forwardNetwork Functions拿下图举例说明神经网络:上图是一个三层的神经网络,第一层叫输入层,最后一层叫输出层,中间的叫做隐含层。(x0,z0是虚构的,值都是1)数据是如何从输入层到达输出层的呢?首先:wji叫做权重系数,wj0叫做偏移量wj0进而:得到第二层的值,h可能是sigmoid,tanh或soft原创 2014-03-04 19:42:34 · 729 阅读 · 0 评论 -
Deep Learning学习笔记之稀疏自编码器(Sparse Autoencoder)
首先要了解神经网络的有关知识,可以参考前一篇博文:PRML学习笔记之Neural Nerwork(神经网络)下图是一个自编码神经网络的示意图:目标是输入和输出保持一致,来训练神经网络,用前一篇博客中的公式。下面再总结一下:当 时, ,也就是第 个输入值(输入值的第 个特征)。然后:能够得到各层的值和输出值。对于中间层,加一个抑制参数:原创 2014-03-11 13:33:23 · 593 阅读 · 0 评论