题目地址:点击打开链接
这个题的困难就是已经知道一组球的全排列了,怎么求包围该组球的最小的矩形的长度。
首先确定每个球圆心的位置:
要想使包围的矩形最小,球都是尽可能的与其他球接触的
如果两个球a,b接触,那么position[b]=position[a]+2*sqrt(rad[a]*rad[b])
第i个球的圆心的位置
为max(position[j]+2*sqrt(rad[j]*rad[i])
其中j=0,1,...,i-1
现在确定了球的圆心位置之后,这组球的最左边可以到到:
min(position[i]-rad[i])
最右边可以达:
max(position[i]+rad[i])
所以矩形边长 为
max(position[i]+rad[i])-min(position[i]-rad[i])
#include <iostream>
#include <cmath>
#include <limits>
#include <iomanip>
#include <algorithm>
using namespace std;
double rad[10];
int num[10];
int n;
double min_length;
void check()
{
double position[10];
position[0]=0;
for(int i=1;i<n;++i)
{
double temp=numeric_limits<double>::min();
for(int j=0;j<i;++j)
{
double x=position[j]+2*sqrt(rad[num[j]]*rad[num[i]]);
if(x>temp)
temp=x;
}
position[i]=temp;
}
double min_position=numeric_limits<double>::max();
double max_position=numeric_limits<double>::min();
for(int i=0;i<n;++i)
{
if(position[i]-rad[num[i]]<min_position)
min_position=position[i]-rad[num[i]];
if(position[i]+rad[num[i]]>max_position)
max_position=position[i]+rad[num[i]];
}
if(max_position-min_position<min_length)
min_length=max_position-min_position;
}
int main()
{
int m;
cin>>m;
while(m--)
{
cin>>n;
for(int i=0;i<n;++i)
{
cin>>rad[i];
num[i]=i;
}
min_length=numeric_limits<double>::max();
do
{
check();
} while (next_permutation(num,num+n));
cout<<setiosflags(ios::fixed)<<setprecision(3)<<min_length<<endl;
}
return 0;
}