题目描述
给定一个头结点为 head 的非空单链表,返回链表的中间结点。
如果有两个中间结点,则返回第二个中间结点。
示例1:
输入: [1,2,3,4,5]
输出: 此列表中的结点 3 (序列化形式:[3,4,5])
返回的结点值为 3 。 (测评系统对该结点序列化表述是 [3,4,5])。
注意,我们返回了一个 ListNode 类型的对象 ans,这样:
ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, 以及 ans.next.next.next = NULL.
示例2:
输入: [1,2,3,4,5,6]
输出: 此列表中的结点 4 (序列化形式:[4,5,6])
由于该列表有两个中间结点,值分别为 3 和 4,我们返回第二个结点。
提示
- 给定链表的结点数介于 1 和 100 之间。
方法一:开辟数组
解题思路
将链表的每个结点存入数组。最后返回中间结点。
代码
class Solution {
public:
ListNode* middleNode(ListNode* head) {
vector<ListNode *> res;
ListNode *p = head;
while(p != NULL)
{
ListNode *t = new ListNode(p->val, p->next);
res.push_back(t);
p = p->next;
}
return res[res.size() / 2];
}
};
复杂度分析
- 时间复杂度:O(n)。
- 空间复杂度:O(n)。需要额外开辟空间。
方法二:单指针法
解题思路
两次遍历链表。
第一次遍历整个链表,求得链表的长度。然后计算中间点 mid。
第二次遍历链表,遍历到第 n / 2 个元素时,直接返回即可。
代码
class Solution {
public:
ListNode* middleNode(ListNode* head) {
ListNode *p = head;
int n = 0;
while(p != NULL)
{
p = p->next;
n++;
}
p = head;
int mid = n / 2;
while(mid--)
{
p = p->next;
}
return p;
}
};
复杂度分析
- 时间复杂度:O(n)。
- 空间复杂度:O(1)。
方法三:快慢指针法
解题思路
用两个指针 slow 与 fast 一起遍历列表。slow 一次走一步,fast 一次走两步。
当 fast 指针为空或者 fast 指针的下一个结点为空时,slow 指针必然位于中间结点。
代码
class Solution {
public:
ListNode* middleNode(ListNode* head) {
ListNode *slow = head;
ListNode *fast = head;
while(fast != NULL && fast->next != NULL)
{
slow = slow->next;
fast = fast->next->next;
}
return slow;
}
};
复杂度分析
- 时间复杂度:O(n)。
- 空间复杂度:O(1)。