【动态规划】leetcode 343. 整数拆分

343. 整数拆分

题目描述

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 * 1 = 1。

示例2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示

  • 2 < = n < = 58 2 <= n <= 58 2<=n<=58

方法:动态规划

解题思路

  1. 确定 dp 数组以及下标的含义
    分拆数字 i,可以得到的最大乘积为 dp[i]。

  2. 确定递推公式
    可以想 dp[i]最大乘积是怎么得到的呢?

    其实可以从 1 遍历 j,然后有两种渠道得到 dp[i].

    一个是 j * (i - j) 直接相乘。

    一个是 j * dp[i - j],相当于是拆分 (i - j),对这个拆分不理解的话,可以回想 dp 数组的定义。

    也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而 j * dp[i - j] 是拆分成两个以及两个以上的个数相乘。

    所以,递推公式为

    dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    
  3. dp 数组如何初始化
    dp[0] 和 dp[1] 定义了没有意义。
    dp[2] = 1;

  4. 确定遍历顺序
    dp[i] 是依靠 dp[i - j]的状态,所以遍历 i 一定是从前向后遍历,先有 dp[i - j] 再有 dp[i]。

  5. 举例推导 dp 数组
    拿示例 2:n = 10

    下标 i2345678910
    dp[i]1246912182736

代码

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for(int i = 3; i <= n; i++)
            for(int j = 1; j < i - 1; j++)
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
        return dp[n];
    }
};

复杂度分析

  • 时间复杂度: O ( n × n ) O(n \times n) O(n×n)
  • 空间复杂度: O ( n ) O(n) O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值