You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1
.
Example 1:
Input: coins = [1, 2, 5]
, amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1
Example 2:
Input: coins = [2]
, amount = 3
Output: -1
Note:
You may assume that you have an infinite number of each kind of coin.
题目链接:https://leetcode-cn.com/problems/coin-change/
思路
法一:DP
比较容易想到的就是DP,较大的金额可以从较小的金额兑换结果中推出,取所有结果中最小的。
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
if(coins.size()==0 || amount<0) return -1;
if(amount==0) return 0;
int rec[amount+1];
memset(rec, -1, (amount+1)*sizeof(int));
rec[0] = 0;
for(int i=1; i<=amount; ++i){
for(int j = 0; j<coins.size(); ++j){
int sub = i-coins[j];
if(sub>=0){
if(rec[sub]==-1)continue;
else{
rec[i] = (rec[i]==-1)?rec[sub]+1:min(rec[i],rec[sub]+1);
}
}
}
}
return rec[amount];
}
};
法二:图最短路径BFS
类似于前面的题,金额为点,零钱为线,连边的条件是差值刚好是零钱的值。
目标是在BFS中找到最快从总金额通向0的路径。
因为这个方法能在找到最优答案后立刻停止,并且剪枝比较多,所以实际运行要比DP快一些。
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
if(coins.size()==0 || amount<0) return -1;
if(amount==0) return 0;
queue<int> que;
int res = 0;
que.push(amount);
bool visit[amount] = {false};
while(!que.empty()){
int len = que.size();
for(int i=0; i<len; ++i){
int sum = que.front();
que.pop();
for(int j=0; j<coins.size(); ++j){
int sub = sum - coins[j];
if(sub==0) return res+1;
else if(sub>0 && !visit[sub]){
que.push(sub);
visit[sub] = true;
}
}
}
++res;
}
return -1;
}
};