Python: Pandas的DataFrame如何按指定list排序

本文介绍了如何使用Pandas的DataFrame根据指定的list进行排序。内容涉及将Series转换为DataFrame,设置数据类型为"category",并针对list元素多于或少于DataFrame列元素的情况,分别使用set_categories方法进行排序。总结了在不同情况下适用的方法,如相等情况使用reorder_categories或set_categories,元素多的情况仅使用set_categories,元素少的情况仍用set_categories,未包含的元素将显示为NaN。
摘要由CSDN通过智能技术生成

本文首发于微信公众号“Python数据之道”(ID:PyDataRoad)

前言

写这篇文章的起由是有一天微信上一位朋友问到一个问题,问题大体意思概述如下:

现在有一个pandas的Series和一个python的list,想让Series按指定的list进行排序,如何实现?

这个问题的需求用流程图描述如下:

我思考了一下,这个问题解决的核心是引入pandas的数据类型“category”,从而进行排序。

在具体的分析过程中,先将pandas的Series转换成为DataFrame,然后设置数据类型,再进行排序。思路用流程图表示如下:

分析过程

  • 引入pandas库
import pandas as pd
  • 构造Series数据
s = pd.Series({
  'a':1,'b':2,'c':3})
s
a    1
b    2
c    3
dtype: int64
s.index
Index(['a', 'b', 'c'], dtype='object')
  • 指定的list,后续按指定list的元素顺序进行排序
list_custom = ['b', 'a', 'c']
list_custom
['b', 'a', 'c']
  • 将Series转换成DataFrame
    df = pd.DataFrame(s)
    df = df.reset_index()
    df.columns = ['words', 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值