数据数据集标注工具 Labelimg详解及技巧

labelimg是一款开源的数据标注工具,可以标注三种格式:voc标签格式(保存为xml文件),yolo标签格式(保存为txt文件),createml 标签格式(保存为json文件)。

labelimg是一个专门用于目标检测任务的图像标注工具(即只能对图像进行分类标注,实现“标注框——类标签”的对应关系)。

labelimg使用

①下载labelimage标注工具

在python虚拟环境命令行中输入:

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

②打开labelimage标注工具

在python虚拟环境命令行中输入:

cd path(进入自己需要标注的图像/图像文件夹path,可选)

labelimg(打开labelimage命令)

可以看到如下界面:

labelImages 设置:

④常用标注快捷键

按键W:开始标注
按键A:上一张图像
按键D:下一张图像

开始标注:Labelimg:数据标注工具详解及使用教程-CSDN博客

跟着网上的教程使用Tensorflow 的 object detection API 训练自己的模型,其中最痛苦的莫不是数据集的创建了。根据网上大佬们的推荐,我用labelImg.exe 来给图片打标签,当数据量十分巨大时,打标签的过程相当的手酸和费鼠标,在一遍遍试验中,我给你一些小建议提高你打标签的效率。ps. 我忘记我电脑里labelImg.exe的版本了,希望其他版本没有改变太多.

文件夹打开与设置保存的文件夹

    左边的菜单栏里有显示 Dir的图标,唯一的提醒是当你中途更换换文件夹进行打标签时一定要记得把Change Save Dir的路径也修改

默认标签

    在软件右上角可以选上 Use default label,这样就不用重复相同命名了

一些快捷键

    a d 文件切换
    w 画框
    ctrl + shift + A advanced mode
    del 删框

自动保存

    在 菜单栏 View中选择 Auto saving,这样切换文件时就不用总是点保存了

高级模式 advanced mode

    很方便的模式 鼠标点击直接画框,任意键切图,试一次就知道有多方便了

                  
原文链接:https://blog.csdn.net/qq_21123327/article/details/106145101

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值