首先说一下冒泡排序的基本算法思想:
它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端(升序或降序排列),就如同碳酸饮料中二氧化碳的气泡最终会上浮到顶端一样,故名“冒泡排序”。
以从小到大排序为例:a[5]={3,5,4,1,0};
- 先将3和5进行比较,已经是我们需要的正序,不需要交换位置;
- 再将5和4进行比较,不是正序,相互交换顺序,序列变为{3,4,5,1,0}。
- 再将5和1进行比较,不是正序,相互交换顺序,序列变为{3,4,1,5,0}。
- 再将5和0进行比较,不是正序,相互交换顺序,序列变为{3,4,1,0,5}。
至此,第1轮冒泡就已经完成了,最大值5到了序列的最后面。
由于5的位置已经排好序,所以第2轮,5不再参与排序,将{3,4,1,0}置为有序序列即可。
假设数组元素个数为n,从上面第1轮的比较来看,我们可以得出如下结论:
- 我们将冒泡排序的轮数设为 i ,每完成1轮冒泡排序,就会增加一个元素处于有序状态,所以在 (n-1) 轮排序结束后,就会有 n-1 个元素处于有序状态,而剩下的最后一个元素,自然是最小(大)值,不用再进行排序,所以,冒泡排序比较的轮数为 (n-1) 。
- 我们将每轮需要比较的次数设为 j ,第1轮( i 值为0)需要比较的次数为4,从 {3,4,1,0} 中不难看出,第2轮( i 值为1)需要比较的次数为3次,说明每轮比较的次数 j 与冒泡的轮数 i 值有关,且 j = n-i-1。
确定好上面两条结论以后,我们开始用代码实现冒泡排序算法:
#include <iostream>
using namespace std;
//对a[]进行正序(从小到大)排序
void bubblesort(int *a,int len) //形参a取到实参a传递过来的数组首地址
//然后解引用,取到数组的值
{
for (int i=0;i<len-1;i++) //i控制排序的轮数
{
for (int j=0;j<len-i-1;j++) //j控制每轮需要比较的次数
{
if(a[j+1]<a[j]) //不满足正序要求,交换顺序
{
int temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
}
int main()
{
int a[10]={2,6,3,8,5,1,0,7,9,4};
int len = sizeof(a)/sizeof(int); // 计算数组元素个数
bubblesort(a,len); //a为数组a[10]首地址,作为实参传递给形参
for(int i=0;i<len;i++)
{
cout<<a[i]<<" ";
}
return 0;
}
得到正序排列的值: 0 1 2 3 4 5 6 7 8 9。