- 博客(305)
- 问答 (1)
- 收藏
- 关注

原创 零基础用AI—10分钟写出爆款神曲!Suno AI音乐创作全指南,开启你的音乐新时代
Suno AI的诞生彻底打破了音乐创作的技术壁垒。无论你是想记录生活、表达情感,还是探索商业化可能,只需大胆输入你的灵感,剩下的交给AI。“流行电子舞曲,欢快,合成器,BPM 120” → 生成适合派对的热单。:生成初期作品可能不完美,多尝试不同关键词和结构,熟练后堪比专业制作!你希望用Suno AI创作什么风格的歌曲?在评论区分享你的创意![Verse 1] 深夜加班眼睛酸,代码如山心不慌。[Chorus] 打工人啊向前冲,升职加薪不是梦。,开启你的第一首AI金曲吧!
2025-02-19 10:14:28
1607

原创 零基础用AI—快手可灵AI全功能实操指南(2025火爆全网的可爱毛绒玩具很简单)
快手可灵AI凭借“零门槛+高产出”的优势,已成为500万用户的首选工具。无论是新手小白还是资深博主,只需掌握上述技巧,即可3分钟生成爆款内容,抢占流量先机。立即行动,用AI为你的创作赋能!
2025-02-18 10:06:43
3902

原创 以「十倍思维」重构人生:从线性增长到指数跃迁的实践指南
但《10x is Easier Than 2x》一书指出,这种思维本质是「优化马车」,而非「发明汽车」。例如,亨利·福特并未试图让马车更快,而是彻底重构交通工具,通过质变实现里程级的突破。当你以「未来10倍的我」审视当下,那些曾令你纠结的80%问题会自然消散,而真正的机会将从20%的聚焦中涌现。正如书中所言:「当你以10倍为尺度时,会立即看清如何绕过他人正在做的事」。:若你的生活没有因践行10x思维而变得更简单、愉悦且高效,说明仍被困在2x的线性逻辑中。」答案本身,就是通往10x未来的钥匙。
2025-02-18 09:06:37
1239

原创 零基础用AI—腾讯元宝(唯一支持联网搜索微信公众号内容的AI工具)使用指南
(以下操作均基于2025年2月13日升级后的版本,支持DeepSeek-R1满血版及微信生态整合)腾讯元宝是腾讯推出的全能AI助手,基于混元大模型和DeepSeek-R1双模型驱动,主打。的AI工具,结合腾讯生态(公众号、视频号等)与全网信息,提供精准、实时、深度的答案。(提示:腾讯官方表示将持续优化模型性能,未来或支持更多第三方模型接入。:打开微信搜索“腾讯元宝”小程序,或下载App开启你的AI效率革命!
2025-02-14 10:59:52
6165

原创 零基础用AI—全免费的百度文心一言使用指南(2025最新版)
但从长远看,文心一言的免费策略,或将通过吸引大量用户,形成规模效应,进而推动技术的持续优化与升级。记得在发布内容时,配上高质量的图片或视频,以及详细的文字说明,这样能更好地吸引和留住读者的注意力。总体而言,文心一言的免费之举,是一次大胆的尝试,也是一次积极的探索。木质小桌旁,一抹绿意盎然,是桌上那盆生机勃勃的植物,与窗外蓝天白云相映成趣,仿佛自然与生活的完美融合。深色的木纹地板,默默记录着每一个晨昏,阳光在上面跳跃,每一道光斑都像是时间的印记,温暖而深刻。每一天,从被阳光唤醒开始,便是生活的诗与远方。
2025-02-14 09:45:34
10465

原创 零基础用AI-提示词工程:释放大模型潜力的核心技能
掌握提示词工程,意味着掌握与AI对话的“元技能”。无论是零基础用户还是开发者,通过持续实践与迭代,都能在O1、R1等新一代技术的浪潮中,高效驾驭AI的无限潜能。
2025-02-13 10:41:26
760

原创 零基础用AI—秘塔AI搜索入门指南
秘塔AI搜索是一款由上海秘塔网络科技有限公司开发的智能搜索引擎,基于大语言模型和自然语言处理技术,专注于提升中文用户的搜索效率与体验。它通过AI技术实现语义理解、问题分析和信息整合,能自动生成结构化结果(如思维导图、大纲、时间线表格),并支持一键导出文件或生成演示文稿,适用于学术研究、职场办公、内容创作等场景。
2025-02-13 09:37:24
14233
3

原创 【零基础用AI—Deepseek使用全解析 】
核心功能定位Deepseek是一款集成AI代码生成、多模态交互(文本/图像/语音)、数据分析及自动化任务处理的智能工具。其特点包括:技术背景与优势步骤1:注册与环境准备步骤2:首次交互实战——生成你的第一个程序案例:开发简易俄罗斯方块H5游戏获取与运行代码:Deepseek将输出完整代码,包含详细注释。复制代码至文件,用浏览器打开即可体验游戏。避坑提示:代码生成与优化数据分析与可视化多模态创作第四章:高效学习路径与资源推荐官方学习体系进阶技巧社区与支持技能变现场景长期规划建
2025-02-12 09:51:57
1459

原创 【零基础用AI—人工智能全景概览】
人工智能(Artificial Intelligence, AI)是模拟、延伸和扩展人类智能的科学与技术,旨在使机器具备感知、推理、学习、决策等能力。:卷积神经网络(CNN,图像处理)、循环神经网络(RNN,序列数据)、Transformer(自然语言处理)。:图像识别准确率超过人类水平(2015),语音识别误差率降至5%以下(2020)。:监督学习(标注数据预测)、无监督学习(数据聚类)、强化学习(奖励机制驱动)。:专注于特定任务(如语音识别、图像分类),当前主流应用均属此类。
2025-02-12 09:10:58
875

原创 零基础上手更安全更友好GORM原作者操刀的GORM GEN
GORM/GEN,持续更新欢迎吐槽Star!!!基于 GORM, 更安全更友好的ORM工具。自动生成CRUD和DIY方法自动根据表结构生成model完全兼容GORM更安全、更友好多种生成代码模式
2021-11-29 09:04:58
8873
原创 零基础数据结构与算法——第五章:高级算法-贪心算法-基础&示例
贪心算法是一种通过每一步选择局部最优解来寻求全局最优解的算法。其核心思想是在每个步骤中选择当前最优的选择,而不考虑后续影响。贪心算法适用于具有最优子结构和贪心选择性质的问题,如活动选择、找零钱等问题。与动态规划相比,贪心算法更简单高效,但不保证所有问题都能得到全局最优解。经典应用包括活动选择问题,通过按结束时间排序并每次选择最早结束的活动来最大化活动数量。贪心算法的设计需要验证正确性,这是其关键难点。
2025-07-17 09:16:10
363
原创 零基础数据结构与算法——第五章:高级算法-动态规划经典-背包问题
摘要:本文介绍了动态规划中的经典背包问题及其变种。0-1背包问题要求每件物品只能选择一次,通过二维或优化后的一维DP数组求解。完全背包问题则允许无限次使用物品,解法与0-1背包类似但遍历顺序不同。文章还讲解了编辑距离问题,通过DP计算两个字符串间的最小操作数(插入、删除、替换)。这些算法在资源分配、拼写检查等领域有广泛应用,是理解动态规划思想的典型案例。每种问题都给出了详细的状态转移方程、初始条件和Java实现代码。
2025-07-16 09:24:34
987
原创 零基础数据结构与算法——第五章:高级算法-动态规划经典-斐波那契数列
本文介绍了两个经典动态规划问题:斐波那契数列和最长递增子序列(LIS)。对于斐波那契数列,展示了递归解法的问题(重复计算)并提供了自底向上和自顶向下两种动态规划解法,以及空间优化版本。对于LIS问题,详细解释了状态定义和转移方程,给出基本解法并介绍了更优的二分查找优化方案。两种问题都通过图解和代码示例展示了求解过程,分析了时间和空间复杂度,为理解动态规划提供了清晰的范例。
2025-07-16 09:16:16
663
原创 零基础数据结构与算法——第五章:高级算法-动态规划基础
动态规划是一种将复杂问题分解为子问题的优化方法。其核心思想是:最优子结构(问题最优解包含子问题最优解)和重叠子问题(子问题重复出现)。实现过程包括定义状态、确定状态转移方程、设定初始条件、确定计算顺序和得出最终结果。动态规划有自顶向下(记忆化搜索)和自底向上(迭代)两种实现方式:前者更直观但效率较低,后者更高效但需明确状态转移顺序。两种方法各有优劣,适用于不同场景。通过类比拼图、最短路径规划等生活实例,可以更直观理解动态规划的原理和应用。
2025-07-15 08:15:00
256
原创 零基础数据结构与算法——第四章:基础算法-分治与总结
本文介绍了四种基础算法:排序算法(包括冒泡、选择、插入排序及高效算法)、搜索算法(线性、二分、插值、跳跃搜索)、递归算法(概念与应用)和分治算法(分解-解决-合并三步骤)。重点阐述了分治法的原理及其在归并排序、快速排序和最大子数组问题中的应用,并提供了Java实现示例。这些算法是解决复杂问题的基础,理解它们有助于提升算法设计能力。文章最后推荐了相关学习资料。
2025-07-15 08:06:15
862
原创 零基础数据结构与算法——第四章:基础算法-递归算法
递归算法通过将问题分解为更小的子问题来求解,包含基本情况和递归情况两个关键部分。典型应用包括阶乘计算、斐波那契数列和汉诺塔问题。与迭代相比,递归代码更简洁但效率较低,可能引发栈溢出。尾递归优化可避免栈问题,其特点是递归调用为最后执行的语句。实际应用中需权衡递归与迭代的选择,根据问题特点采用合适解法。
2025-07-14 08:47:54
167
原创 零基础数据结构与算法——第四章:基础算法-搜索算法(跳跃)
跳跃搜索是一种针对有序数组的搜索算法,通过固定步长跳跃减少比较次数。其核心思想是先大步跳跃确定区间,再在线性搜索。最优步长为√n,时间复杂度O(√n)。相比线性搜索更快,比二分搜索更简单但稍慢,适用于单向链表等结构。实际应用包括数据库索引、文件系统搜索等场景。该算法结合了跳跃和线性搜索的优势,在特定情况下比传统搜索方法更高效。
2025-07-14 08:45:11
550
原创 零基础数据结构与算法——第四章:基础算法-搜索算法(插值)
插值搜索是二分搜索的改进算法,适用于均匀分布的有序数据集。它通过计算目标值在数据范围内的可能位置(而非简单取中点)来快速定位搜索区间,平均时间复杂度可达到O(log log n)。算法步骤包括初始化边界、插值公式计算估计位置、比较并调整搜索范围。相比二分搜索,插值搜索对均匀分布数据效率更高,但存在最坏情况O(n)复杂度、计算开销较大等缺点。实际应用于数据库索引、电话簿查询等场景,特别适合大规模且分布均匀的数据搜索。代码实现需注意边界条件和除零保护。
2025-07-11 08:12:56
932
原创 零基础数据结构与算法——第四章:基础算法-搜索算法(二分)
二分搜索是一种高效查找算法,仅适用于已排序数组。其核心思想是通过不断将搜索区间减半来快速定位目标元素,时间复杂度为O(log n)。算法步骤包括:初始化左右边界、计算中间位置、比较中间元素与目标值、调整搜索范围直至找到目标或区间为空。二分搜索有递归和迭代两种实现方式,其中迭代法因避免栈溢出更推荐使用。该算法适用于大型有序数据集,但不适合频繁变动的动态数据。常见变种包括查找重复元素的首次/末次出现位置,以及上下界搜索。
2025-07-10 09:17:42
1057
原创 零基础数据结构与算法——第四章:基础算法-搜索算法(线性)
线性搜索是最基础的搜索算法,适用于无序数据集。算法从数据一端开始逐个检查元素,直到找到目标或遍历完所有元素。时间复杂度为O(n),空间复杂度为O(1)。优点是简单易实现,适用于任何数据类型;缺点是对大数据集效率低。优化方法包括提前终止、跳跃搜索等。适用于小数据集或无序数据的单次搜索场景。
2025-07-10 09:12:43
386
原创 零基础数据结构与算法——第四章:基础算法-排序(总)
本文系统比较了常见排序算法的性能特点和应用场景。通过表格详细对比了冒泡、选择、插入、归并、快速、堆、计数、基数、桶等9种排序算法的时间复杂度、空间复杂度、稳定性和是否基于比较等关键指标。文章还提供了具体的选择指南,建议根据数据规模、内存限制、稳定性要求等不同场景选择合适的算法,并举例说明了排序算法在系统库、数据库、大数据等领域的实际应用。最后指出混合排序、并行计算等是排序算法的发展趋势,为工程实践中的算法选择提供了有价值的参考。
2025-07-08 08:38:03
1099
原创 零基础数据结构与算法——第四章:基础算法-排序(下)
计数排序是一种非比较排序算法,通过统计元素出现次数实现排序,适用于整数且范围较小的情况,时间复杂度为O(n+k)。基数排序则按数字的每一位进行排序(通常从最低位开始),适合位数较少的整数排序。两种算法都是稳定的,但计数排序空间复杂度较高,基数排序需要多次分配和收集过程。计数排序适合数据量大但范围小的场景,基数排序适合位数较少的大整数排序。
2025-07-08 08:29:51
1015
原创 零基础数据结构与算法——第四章:基础算法-排序(中)
堆排序是一种基于比较的排序算法,它利用堆这种特殊的数据结构进行排序。堆是一个近似完全二叉树的结构,并同时满足堆的性质:每个节点的值都大于或等于(或小于或等于)其子节点的值。
2025-07-07 10:33:15
802
原创 零基础数据结构与算法——第四章:基础算法-排序(上)
冒泡排序是最简单直观的排序算法之一,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就交换它们。名字来源于较大的元素会经由交换慢慢"浮"到数列的顶端,就像水中的气泡上升一样。
2025-07-07 10:27:32
760
原创 零基础数据结构与算法—— 第三章:高级数据结构-总结
本文系统介绍了四种核心高级数据结构及其应用。首先讲解了堆(Heap)的概念、基本操作和排序应用;其次解析了哈希表(Hash Table)的设计原理、冲突解决策略及性能分析;然后详细阐述了图(Graph)的表示方法、遍历算法和实际应用场景;最后探讨了字典树、线段树等高级树结构的特性与优势。文章通过对比表格展示了不同数据结构的适用场景,提供了从基础到高级的实践练习题,并推荐了《算法导论》等经典教材作为延伸阅读,帮助读者全面掌握这些数据结构在解决复杂问题中的强大能力。
2025-07-03 08:09:43
955
原创 零基础数据结构与算法——第三章:高级数据结构-高级树
本文摘要: 《高级树结构与应用》介绍了字典树和线段树两种高效数据结构。字典树(Trie)适用于字符串处理,具有O(m)时间复杂度的查找性能,典型应用包括输入法补全、拼写检查等。通过Java代码示例展示了字典树的实现方式。线段树用于区间查询,支持快速统计区间信息(如求和、最大值等),在成绩统计、股票分析等场景有重要应用。文章通过生活实例和图解说明两种树结构的特点,并分析了各自的优缺点,为处理特定领域问题提供了高效的数据结构解决方案。
2025-07-02 08:40:18
1028
原创 零基础数据结构与算法——第三章:高级数据结构-图
本文介绍了图这一非线性数据结构的基本概念及其应用。主要内容包括:1)图的定义与术语(顶点、边、路径、环等);2)图的分类(无向/有向图、加权/无权图等);3)图的两种主要表示方法(邻接矩阵和邻接表)及其优缺点;4)基于邻接表的图实现示例代码。文章通过交通网络、社交关系等生活实例帮助理解,并提供了广度优先搜索算法的实现。图结构广泛应用于路径规划、社交网络分析等领域。
2025-07-02 08:29:34
1325
原创 零基础数据结构与算法——第三章:高级数据结构-哈希表
哈希表是一种高效的数据结构,通过哈希函数将键映射到数组索引,实现O(1)时间复杂度的快速操作。它由键、值、哈希函数和桶组成,应用场景包括图书馆索引、学生信息系统等。哈希函数需满足计算简单、分布均匀和冲突少的特点。冲突解决方法主要包括链地址法(使用链表存储冲突元素)和开放寻址法(线性/二次探测等)。文中还提供了基于链地址法的Java实现示例,包含插入、查找和删除等核心操作。哈希表通过合理的哈希函数设计和冲突处理策略,成为高效存储和检索数据的重要工具。
2025-07-01 08:33:50
824
原创 零基础数据结构与算法——第三章:高级数据结构-堆
堆是一种特殊的完全二叉树,分为最大堆(父节点≥子节点)和最小堆(父节点≤子节点)。它具有高效的最值查找(O(1))和插入删除操作(O(log n)),通常用数组实现。堆支持插入、删除堆顶、获取堆顶和构建等基本操作,广泛应用于优先队列、堆排序、图算法(如Dijkstra)、中位数计算和任务调度等场景。其完全二叉树结构允许高效存储,且能自动维护堆序性,是处理优先级相关问题的理想数据结构。
2025-07-01 08:19:38
565
原创 零基础数据结构与算法——第三章:高级数据结构-树(下)
平衡二叉搜索树是一种特殊的二叉搜索树,它通过某种机制保证树的高度平衡,从而保证操作的时间复杂度为O(log n)。当一棵普通的二叉搜索树变得不平衡时(例如,一侧的子树明显比另一侧深),搜索效率会大大降低。
2025-06-30 10:13:30
806
原创 零基础数据结构与算法——第二章:基本数据结构-队列&总结
- **数组**:提供随机访问能力,但大小固定且插入删除操作可能需要移动元素。就像一排固定的座位,你可以直接找到任何一个座位,但要在中间加入新座位就需要移动其他座位。- **链表**:动态大小,高效的插入删除操作,但不支持随机访问。就像一条手拉手的人链,可以随时加入或离开,但要找到特定的人需要从头开始数。- **栈**:后进先出(LIFO)的数据结构,适用于需要逆序处理的场景。就像一堆盘子,只能从顶部添加或移除。- **队列**:先进先出(FIFO)的数据结构,适用于按顺序处理的场景。就像排队
2025-06-25 08:36:26
981
原创 零基础数据结构与算法——第二章:基本数据结构-栈
**何时使用栈?**- 当你需要以相反的顺序处理元素时- 当你需要跟踪"撤销"操作时- 当你需要实现递归算法的非递归版本时- 当问题具有"后进先出"的特性时
2025-06-25 08:20:10
1013
原创 零基础数据结构与算法——第二章:基本数据结构-数组
**数组**:提供随机访问能力,但大小固定且插入删除操作可能需要移动元素。就像一排固定的座位,你可以直接找到任何一个座位,但要在中间加入新座位就需要移动其他座位。
2025-06-24 08:25:39
961
原创 零基础数据结构与算法——第一章:基础下
算法复杂度分析的基础知识,包括大O表示法和常见的时间复杂度。这些工具帮助我们评估和比较不同算法的效率。最后,我们介绍了编程语言中的基本数据类型和复合数据类型,它们是构建数据结构的基础。
2025-06-23 09:14:32
930
原创 零基础学数据结构与算法——大纲汇总
这篇教程为初学者提供了系统的数据结构与算法学习路径。主要内容包括:1) 基础概念与实现方法;2) 常见算法设计与分析;3) 实际解题技巧。课程分为8个循序渐进的章节,从基础到高级内容全面覆盖。适合计算机专业学生、准备面试的程序员及编程爱好者学习。教程强调动手实践与知识体系的构建,建议学习者按顺序完成各章节的学习和练习。
2025-06-23 09:01:28
160
原创 零基础设计模式——总结与进阶 - 3. 学习资源与下一步
设计模式是前人智慧的结晶,是解决特定问题的有效“套路”。学习它们,是为了让我们站在巨人的肩膀上,写出更优雅、更健壮、更易于维护和扩展的代码。但切记,模式是手段,不是目的。真正的目标是构建优秀的软件。希望本教程能为你打下坚实的基础,祝你在软件设计的道路上不断探索,享受创造的乐趣!
2025-06-18 09:58:59
696
原创 零基础设计模式——总结与进阶 - 2. 反模式
理解反模式与理解设计模式同样重要。它们就像地图上的“危险区域”标记,能帮助我们绕开陷阱,走向更健康、更可持续的软件开发之路。
2025-06-18 09:56:35
646
安全的gorm代码工具
2021-10-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人