机器学习实战笔记(Python实现)-01-K近邻算法(KNN)

目录

正文

---------------------------------------------------------------------------------------

本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。

源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction

https://github.com/apachecn/AiLearning/tree/master

 

1 算法概述

1.1 算法特点

简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。

优点:精度高、对异常值不敏感、无数据输入假定

缺点:计算复杂度高、空间复杂度高

适用数据范围:数值型和标称型

 

1.2 工作原理

存在一个训练样本集,并且每个样本都存在标签(有监督学习)。输入没有标签的新样本数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取出与样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,而且k通常不大于20。最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

 

1.3 实例解释

以电影分类为例子,使用k-近邻算法分类爱情片和动作片。有人曾经统计过很多电影的打斗镜头和接吻镜头,下图显示了6部电影的打斗和接吻镜头数。 假如有一部未看过的电影,如何确定它是爱情片还是动作片呢? 

①首先需要统计这个未知电影存在多少个打斗镜头和接吻镜头,下图中问号位置是该未知电影出现的镜头数 

②之后计算未知电影与样本集中其他电影的距离(相似度),具体算法先忽略,结果如下表所示:

③将相似度列表排序,选出前k个最相似的样本。此处我们假设k=3,将上表中的相似度进行排序后前3分别是:He’s Not Really into Dudes,Beautiful Woman,California Man。
④统计最相似样本的分类。此处很容易知道这3个样本均为爱情片。
⑤将分类最多的类别作为未知电影的分类。那么我们就得出结论,未知电影属于爱情片。

 

再次解释:

KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法。

他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后看这K个样本大部分属于哪一类,那么就认为这个测试样本也属于哪一类。简单的说就是让最相似的K个样本来投票决定。

这里所说的距离,一般最常用的就是多维空间的欧式距离。这里的维度指特征维度,即样本有几个特征就属于几维。

KNN示意图如下所示。(图片来源:百度百科http://baike.baidu.com/view/1485833.htm?from_id=3479559&type=syn&fromtitle=knn&fr=aladdin)

上图中要确定测试样本绿色属于蓝色还是红色。

显然,当K=3时,将以1:2的投票结果分类于红色;而K=5时,将以3:2的投票结果分类于蓝色。

KNN算法简单有效,但没有优化的暴力法效率容易达到瓶颈。如样本个数为N,特征维度为D的时候,该算法时间复杂度呈O(DN)增长。

所以通常KNN的实现会把训练数据构建成K-D Tree(K-dimensional tree),构建过程很快,甚至不用计算D维欧氏距离,而搜索速度高达O(D*log(N))。

不过当D维度过高,会产生所谓的”维度灾难“,最终效率会降低到与暴力法一样。

因此通常D>20以后,最好使用更高效率的Ball-Tree,其时间复杂度为O(D*log(N))。

人们经过长期的实践发现KNN算法虽然简单,但能处理大规模的数据分类,尤其适用于样本分类边界不规则的情况。最重要的是该算法是很多高级机器学习算法的基础。

当然,KNN算法也存在一切问题。比如如果训练数据大部分都属于某一类,投票算法就有很大问题了。这时候就需要考虑设计每个投票者票的权重了。
 

 

回到顶部

2 代码实现

2.1 k-近邻简单分类的应用

2.1.1 算法一般流程

2.1.2 Python实现代码及注释  

  1 #coding=UTF8
  2 from numpy import *
  3 import operator
  4 
  5 def createDataSet():
  6     """
  7     函数作用:构建一组训练数据(训练样本),共4个样本
  8     同时给出了这4个样本的标签,及labels
  9     """
 10     group = array([
 11         [1.0, 1.1],
 12         [1.0, 1.0],
 13         [0. , 0. ],
 14         [0. , 0.1]
 15     ])
 16     labels = ['A', 'A', 'B', 'B']
 17     return group, labels
 18 
 19 def classify0(inX, dataset, labels, k):
 20     """
 21     inX 是输入的测试样本,是一个[x, y]样式的
 22     dataset 是训练样本集
 23     labels 是训练样本标签
 24     k 是top k最相近的
 25     """
 26     # shape返回矩阵的[行数,列数],
 27     # 那么shape[0]获取数据集的行数,
 28     # 行数就是样本的数量
 29     dataSetSize = dataset.shape[0] 
 30     
 31     """
 32     下面的求距离过程就是按照欧氏距离的公式计算的。
 33     即 根号(x^2+y^2)
 34     """
 35     # tile属于numpy模块下边的函数
 36     # tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
 37     # 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
 38     # tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
 39     #                  [0, 1, 2, 0, 1, 2]]
 40     # tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
 41     #                    [[0, 1, 2, 0, 1, 2]]] 
 42     # 上边那个结果的分开理解就是:
 43     # 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
 44     # 然后C包含1个元素,即C=[E],同理D=[E]
 45     # 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
 46     # F就是A了,基础元素
 47     # 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
 48     # 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
 49     # 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
 50     # 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
 51     # 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
 52     # 比如inX = [0,1],dataset就用函数返回的结果,那么
 53     # tile(inX, (4,1))= [[ 0.0, 1.0],
 54     #                    [ 0.0, 1.0],
 55     #                    [ 0.0, 1.0],
 56     #                    [ 0.0, 1.0]]
 57     # 作差之后
 58     # diffMat = [[-1.0,-0.1],
 59     #            [-1.0, 0.0],
 60     #            [ 0.0, 1.0],
 61     #            [ 0.0, 0.9]]
 62     diffMat = tile(inX, (dataSetSize, 1)) - dataset
 63     
 64     # diffMat就是输入样本与每个训练样本的差值,然后对其每个x和y的差值进行平方运算。
 65     # diffMat是一个矩阵,矩阵**2表示对矩阵中的每个元素进行**2操作,即平方。
 66     # sqDiffMat = [[1.0, 0.01],
 67     #              [1.0, 0.0 ],
 68     #              [0.0, 1.0 ],
 69     #              [0.0, 0.81]]
 70     sqDiffMat = diffMat ** 2
 71     
 72     # axis=1表示按照横轴,sum表示累加,即按照行进行累加。
 73     # sqDistance = [[1.01],
 74     #               [1.0 ],
 75     #               [1.0 ],
 76     #               [0.81]]
 77     sqDistance = sqDiffMat.sum(axis=1)
 78     
 79     # 对平方和进行开根号
 80     distance = sqDistance ** 0.5
 81     
 82     # 按照升序进行快速排序,返回的是原数组的下标。
 83     # 比如,x = [30, 10, 20, 40]
 84     # 升序排序后应该是[10,20,30,40],他们的原下标是[1,2,0,3]
 85     # 那么,numpy.argsort(x) = [1, 2, 0, 3]
 86     sortedDistIndicies = distance.argsort()
 87     
 88     # 存放最终的分类结果及相应的结果投票数
 89     classCount = {}
 90     
 91     # 投票过程,就是统计前k个最近的样本所属类别包含的样本个数
 92     for i in range(k):
 93         # index = sortedDistIndicies[i]是第i个最相近的样本下标
 94         # voteIlabel = labels[index]是样本index对应的分类结果('A' or 'B')
 95         voteIlabel = labels[sortedDistIndicies[i]]
 96         # classCount.get(voteIlabel, 0)返回voteIlabel的值,如果不存在,则返回0
 97         # 然后将票数增1
 98         classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
 99     
100     # 把分类结果进行排序,然后返回得票数最多的分类结果
101     sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
102     return sortedClassCount[0][0]
103 
104 if __name__== "__main__":
105     # 导入数据
106     dataset, labels = createDataSet()
107     inX = [0.1, 0.1]
108     # 简单分类
109     className = classify0(inX, dataset, labels, 3)
110     print('the class of test sample is %s' %className)

复制代码

 

2.2 在约会网站上使用k-近邻算法

2.2.1 算法一般流程

2.2.2 Python实现代码

datingTestSet.txt 文件中有1000行的约会数据,样本主要包括以下3种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所耗时间百分比
  • 每周消费的冰淇淋公升数

将上述特征数据输人到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式 。在kNN.py中创建名为 file2matrix 的函数,以此来处理输人格式问题。该函数的输人为文件名字符串,输出为训练样本矩阵和类标签向量。autoNorm 为数值归一化函数,将任意取值范围的特征值转化为0到1区间内的值。最后,datingClassTest 函数是测试代码。

将下面的代码增加到 kNN.py 中。 

 1 def file2matrix(filename):
 2     """
 3     从文件中读入训练数据,并存储为矩阵
 4     """
 5     fr = open(filename)
 6     arrayOlines = fr.readlines()
 7     numberOfLines = len(arrayOlines)   #获取 n=样本的行数
 8     returnMat = zeros((numberOfLines,3))   #创建一个2维矩阵用于存放训练样本数据,一共有n行,每一行存放3个数据
 9     classLabelVector = []    #创建一个1维数组用于存放训练样本标签。  
10     index = 0
11     for line in arrayOlines:
12         # 把回车符号给去掉
13         line = line.strip()    
14         # 把每一行数据用\t分割
15         listFromLine = line.split('\t')
16         # 把分割好的数据放至数据集,其中index是该样本数据的下标,就是放到第几行
17         returnMat[index,:] = listFromLine[0:3]
18         # 把该样本对应的标签放至标签集,顺序与样本集对应。
19         classLabelVector.append(int(listFromLine[-1]))
20         index += 1
21     return returnMat,classLabelVector
22     
23 def autoNorm(dataSet):
24     """
25     训练数据归一化
26     """
27     # 获取数据集中每一列的最小数值
28     # 以createDataSet()中的数据为例,group.min(0)=[0,0]
29     minVals = dataSet.min(0) 
30     # 获取数据集中每一列的最大数值
31     # group.max(0)=[1, 1.1]
32     maxVals = dataSet.max(0) 
33     # 最大值与最小的差值
34     ranges = maxVals - minVals
35     # 创建一个与dataSet同shape的全0矩阵,用于存放归一化后的数据
36     normDataSet = zeros(shape(dataSet))
37     m = dataSet.shape[0]
38     # 把最小值扩充为与dataSet同shape,然后作差,具体tile请翻看 第三节 代码中的tile
39     normDataSet = dataSet - tile(minVals, (m,1))
40     # 把最大最小差值扩充为dataSet同shape,然后作商,是指对应元素进行除法运算,而不是矩阵除法。
41     # 矩阵除法在numpy中要用linalg.solve(A,B)
42     normDataSet = normDataSet/tile(ranges, (m,1))
43     return normDataSet, ranges, minVals
44    
45 def datingClassTest():
46     # 将数据集中10%的数据留作测试用,其余的90%用于训练
47     hoRatio = 0.10
48     datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file
49     normMat, ranges, minVals = autoNorm(datingDataMat)
50     m = normMat.shape[0]
51     numTestVecs = int(m*hoRatio)
52     errorCount = 0.0
53     for i in range(numTestVecs):
54         classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
55         print("the classifier came back with: %d, the real answer is: %d, result is :%s" % (classifierResult, datingLabels[i],classifierResult==datingLabels[i]))
56         if (classifierResult != datingLabels[i]): errorCount += 1.0
57     print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
58     print(errorCount)

复制代码

 

2.3 手写识别系统实例

2.3.1 实例数据

为了简单起见,这里构造的系统只能识别数字0到9。需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小 : 宽髙是32像素x 32像素的黑白图像。尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式。

trainingDigits是2000个训练样本,testDigits是900个测试样本。

2.3.2 算法的流程

 2.3.3 Python实现代码

将下面的代码增加到 kNN.py 中,img2vector 为图片转换成向量的方法,handwritingClassTest 为测试方法:

 1 from os import listdir
 2 def img2vector(filename):
 3     """
 4     将图片数据转换为01矩阵。
 5     每张图片是32*32像素,也就是一共1024个字节。
 6     因此转换的时候,每行表示一个样本,每个样本含1024个字节。
 7     """
 8     # 每个样本数据是1024=32*32个字节
 9     returnVect = zeros((1,1024))
10     fr = open(filename)
11     # 循环读取32行,32列。
12     for i in range(32):
13         lineStr = fr.readline()
14         for j in range(32):
15             returnVect[0,32*i+j] = int(lineStr[j])
16     return returnVect
17 
18 def handwritingClassTest():
19     hwLabels = []
20     # 加载训练数据
21     trainingFileList = listdir('trainingDigits')           
22     m = len(trainingFileList)
23     trainingMat = zeros((m,1024))
24     for i in range(m):
25         # 从文件名中解析出当前图像的标签,也就是数字是几
26         # 文件名格式为 0_3.txt 表示图片数字是 0
27         fileNameStr = trainingFileList[i]
28         fileStr = fileNameStr.split('.')[0]     #take off .txt
29         classNumStr = int(fileStr.split('_')[0])
30         hwLabels.append(classNumStr)
31         trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
32     # 加载测试数据
33     testFileList = listdir('testDigits')        #iterate through the test set
34     errorCount = 0.0
35     mTest = len(testFileList)
36     for i in range(mTest):
37         fileNameStr = testFileList[i]
38         fileStr = fileNameStr.split('.')[0]     #take off .txt
39         classNumStr = int(fileStr.split('_')[0])
40         vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
41         classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
42         print("the classifier came back with: %d, the real answer is: %d, The predict result is: %s" % (classifierResult, classNumStr, classifierResult==classNumStr))
43         if (classifierResult != classNumStr): errorCount += 1.0
44     print("\nthe total number of errors is: %d / %d" %(errorCount, mTest))
45     print("\nthe total error rate is: %f" % (errorCount/float(mTest)))

复制代码

k-近邻算法识别手写数字数据集,错误率为1. 2%。改变变量k的值、修改函数 handwritingClassTest 随机选取训练样本、改变训练样本的数目,都会对k-近邻算法的错误率产生影响,感兴趣的话可以改变这些变量值,观察错误率的变化。

k-近邻算法是分类数据最简单最有效的算法。它必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。其另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。

 

回到顶部

3 应用 scikit-learn 库实现k近邻算法

#!/usr/bin/python
# -*- coding: UTF-8 -*-

"""
Created on 2017-06-28
Updated on 2017-06-28
KNN:k近邻算法
@author: 小瑶
《机器学习实战》更新地址:https://github.com/apachecn/AiLearning
"""
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from numpy import *
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 3

# 导入一些要玩的数据
iris = datasets.load_iris()
X = iris.data[:, :2]  # 我们只采用前两个feature. 我们可以使用二维数据集避免这个丑陋的切片
y = iris.target

# print 'X=', type(X), X
# print 'y=', type(y), y

# X = array([[-1.0, -1.1], [-1.0, -1.0], [0, 0], [1.0, 1.1], [2.0, 2.0], [2.0, 2.1]])
# y = array([0, 0, 0, 1, 1, 1])

# print 'X=', type(X), X
# print 'y=', type(y), y

h = .02  # 网格中的步长

# 创建彩色的图
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

# cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
# cmap_bold = ListedColormap(['#FF0000', '#00FF00'])

for weights in ['uniform', 'distance']:
    # 我们创建了一个knn分类器的实例,并拟合数据。
    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X, y)

    #训练准确率:
    score = clf.score(X, y)
    print("score:%f\n" % score)
    #score = clf.score(iris.data, iris.target)

    #预测
    # 预测
    predict = clf.predict([[0.1, 0.2]])

    # 预测,返回概率数组

    predict2 = clf.predict_proba([[0.1, 0.2]])
    print(predict)
    print(iris.target_names[predict])

    # 绘制决策边界。为此,我们将为每个分配一个颜色
    # 来绘制网格中的点 [x_min, x_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # 将结果放入一个彩色图中
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # 绘制训练点
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i, weights = '%s')"
              % (n_neighbors, weights))

plt.show()

https://blog.csdn.net/qq_36330643/article/details/77532161

四、KNN的优缺点
(1)优点
①简单,易于理解,易于实现,无需参数估计,无需训练;
②精度高,对异常值不敏感(个别噪音数据对结果的影响不是很大);
③适合对稀有事件进行分类;

④特别适合于多分类问题(multi-modal,对象具有多个类别标签),KNN要比SVM表现要好.
(2)缺点
①对测试样本分类时的计算量大,空间开销大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本;
②可解释性差,无法给出决策树那样的规则;
③最大的缺点是当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进;
④消极学习方法。

五、对k-近邻算法的说明
按距离加权的k-近邻算法是一种非常有效的归纳推理方法。它对训练数据中的噪声有很好的鲁棒性,而且当给定足够大的训练集合时它也非常有效。注意通过取k个近邻的加权平均,可以消除孤立的噪声样例的影响。
问题一:近邻间的距离会被大量的不相关属性所支配。
应用k-近邻算法的一个实践问题是,实例间的距离是根据实例的所有属性(也就是包含实例的欧氏空间的所有坐标轴)计算的。这与那些只选择全部实例属性的一个子集的方法不同,例如决策树学习系统。
比如这样一个问题:每个实例由20个属性描述,但在这些属性中仅有2个与它的分类是有关。在这种情况下,这两个相关属性的值一致的实例可能在这个20维的实例空间中相距很远。结果,依赖这20个属性的相似性度量会误导k-近邻算法的分类。近邻间的距离会被大量的不相关属性所支配。这种由于存在很多不相关属性所导致的难题,有时被称为维度灾难(curse of dimensionality)。最近邻方法对这个问题特别敏感。
解决方法:当计算两个实例间的距离时对每个属性加权。
这相当于按比例缩放欧氏空间中的坐标轴,缩短对应于不太相关属性的坐标轴,拉长对应于更相关的属性的坐标轴。每个坐标轴应伸展的数量可以通过交叉验证的方法自动决定。
问题二:应用k-近邻算法的另外一个实践问题是如何建立高效的索引。因为这个算法推迟所有的处理,直到接收到一个新的查询,所以处理每个新查询可能需要大量的计算。
解决方法:目前已经开发了很多方法用来对存储的训练样例进行索引,以便在增加一定存储开销情况下更高效地确定最近邻。一种索引方法是kd-tree(Bentley 1975;Friedman et al. 1977),它把实例存储在树的叶结点内,邻近的实例存储在同一个或附近的结点内。通过测试新查询xq的选定属性,树的内部结点把查询xq排列到相关的叶结点

问题三:当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。

解决方法:无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进,距离加权

消极学习与积极学习

  1. 积极学习(Eager Learning)
    这种学习方式是指在进行某种判断(例如,确定一个点的分类或者回归中确定某个点对应的函数值)之前,先利用训练数据进行训练得到一个目标函数,待需要时就只利用训练好的函数进行决策,显然这是一种一劳永逸的方法,SVM就属于这种学习方式。
  2. 消极学习(Lazy Learning)
    这种学习方式指不是根据样本建立一般化的目标函数并确定其参数,而是简单地把训练样本存储起来,直到需要分类新的实例时才分析其与所存储样例的关系,据此确定新实例的目标函数值。也就是说这种学习方式只有到了需要决策时才会利用已有数据进行决策,而在这之前不会经历 Eager Learning所拥有的训练过程。KNN就属于这种学习方式。
  3. 比较

    • Eager Learning考虑到了所有训练样本,说明它是一个全局的近似,虽然它需要耗费训练时间,但它的决策时间基本为0.
    • Lazy Learning在决策时虽然需要计算所有样本与查询点的距离,但是在真正做决策时却只用了局部的几个训练数据,所以它是一个局部的近似,然而虽然不需要训练,它的复杂度还是需要 O(n),n 是训练样本的个数。由于每次决策都需要与每一个训练样本求距离,这引出了Lazy Learning的缺点:(1)需要的存储空间比较大 (2)决策过程比较慢
  4. 典型算法

    • 积极学习方法:SVM;Find-S算法;候选消除算法;决策树;人工神经网络;贝叶斯方法;
    • 消极学习方法:KNN;局部加权回归;基于案例的推理;
机器学习包sklearn中有最近邻
from sklearn import neighbors, datasets
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值