Kaggle入侵物种检测VGG16示例——基于Keras

根据Kaggle: Invasive Species Monitoring问题的描述,我们需要对图像是否包含入侵物种进行判断,也就是对图片进行而分类(0:图像中不含入侵物种;1:图像中含有入侵物种),据给出的数据(训练集2295张图及类别,测试集1531张图),很显然,这种图像分类任务很适合用CN...

2017-08-23 20:08:36

阅读数 2650

评论数 0

win10下配置GPU加速的Keras框架

不久之前,开始学习深度学习,这个时候发现用CPU计算的Keras框架性能明显不够用了,但当时随便弄了一下没能成功实现GPU加速。于是后来一次重装系统,从头详细地重现这个过程。Python环境搭建要搭建Python环境,个人觉得真的没有比Anaconda安装更省心的了,而且其内部已经包含了许多常用的...

2017-08-23 11:15:06

阅读数 25936

评论数 5

PRML:多元变量分布

考虑有 KK 个状态的问题。我们用一个 KK 维的向量 (x1,…,xK)(x_1, \dots, x_K) 来表示这些状态,第 kk 个状态用 xk=1,xj=0,∀j≠kx_k = 1, x_j=0, \forall j \neq k 表示。例如 x=(0,0,1,0,0,0)T\mathbf...

2017-07-31 21:15:06

阅读数 614

评论数 0

PRML:二元变量分布

伯努利分布考虑二元随机变量 x∈{0,1}x\in \{0,1\}(抛硬币,正面为 1,反面为 0),其概率分布由参数 μ\mu 决定:p(x=1)=μ p(x=1)=\mu 其中 (0≤μ≤1)(0 \leq\mu \leq 1),并且有 p(x=0)=1−μp(x=0)=1-\mu。这就是伯努...

2017-07-31 21:09:46

阅读数 468

评论数 2

Kaggle房价预测:数据预处理——练习

本篇主要借鉴了Kaggle基础问题——房价预测的两篇教程Comprehensive data exploration with Python和House Prices EDA并进行总结。基于上一篇数据探索,我们可以对整个数据集的基本特征进行大致了解,并同时学习到了Pandas和Seaborn的一些...

2017-07-15 13:19:31

阅读数 21463

评论数 7

Kaggle房价预测:数据探索——练习

主要借鉴了Kaggle基础问题——房价预测的两篇教程Comprehensive data exploration with Python和House Prices EDA并进行总结。本篇,主要进行数据探索,对数据的基本特征有一个全局的大致了解。import pandas as pd import ...

2017-07-15 12:48:33

阅读数 5767

评论数 0

机器学习-周志华-个人练习13.10

13.10 试为图13.7算法第10行写出违约检测算法(用以检测是否有约束未被满足)根据题意可知,我们的目的是检测将xi\mathbf x_i划入聚类簇CrC_r是否会违背M与C\mathcal M与\mathcal C中的约束。 在这里不能只简单考虑该样本是否满足与某些约束条件内样本的“必连”...

2017-06-12 14:51:36

阅读数 469

评论数 1

半监督学习(转载)

本文转载自ice110956。 什么是半监督学习?传统的机器学习技术分为两类,一类是无监督学习,一类是监督学习。 无监督学习只利用未标记的样本集,而监督学习则只利用标记的样本集进行学习。 但在很多实际问题中,只有少量的带有标记的数据,因为对数据进行标记的代价有时很高,比如在生物学中,对某种蛋白质的...

2017-06-10 11:12:35

阅读数 2386

评论数 0

图半监督学习——标记传播

从书上301~304页的介绍可知,图半监督学习具有两个明显的缺点: 处理大规模数据时性能欠佳; 难以直接对新样本进行分类。 下面采用sklearn的半监督学习模块来验证上述特性。 选用iris数据集的第1、3项属性开展测试,sklearn 的半监督学习算法是利用标记传播进行学...

2017-06-09 23:30:43

阅读数 4608

评论数 0

机器学习-周志华-个人练习13.4

13.4 从网上下载或自己编程实现TSVM算法,选择两个UCI数据集,将其中30%的样例用作测试样本,10%的样例用作有标记样本,60%的样例用作无标记样本,分别训练出利用无标记样本的TSVM以及仅利用有标记样本的SVM,并比较其性能。选择最常用的iris数据集,并以sciki-learn的SVM...

2017-06-09 11:31:15

阅读数 1626

评论数 2

机器学习-周志华-个人练习13.3

13.3 假设数据由混合专家(mixture of experts)模型生成,即数据是基于kk个成分混合而得的概率密度生成: 半监督学习之混合专家模型的模型参数

2017-06-01 16:46:14

阅读数 407

评论数 0

机器学习-周志华-个人练习13.2

13.2 试基于朴素贝叶斯模型推导生成式半监督学习算法回顾一下,朴素贝叶斯的假设是xi=(xi1,…,xin)\mathbf x_{i}=(x_{i1},\ldots,x_{in})中的所有xijx_{ij}相互独立,结合贝叶斯公式可知,我们的目标是找到一个ck∈Cc_k \in \mathcal...

2017-05-30 16:59:31

阅读数 357

评论数 0

机器学习-周志华-个人练习13.1

13.1 试推导出式(13.5)~(13.8).式13.5首先,我们知道高斯混合模型的混合成分均为高斯分布,且由如下公式定义: pM(x)p(x∣μi,Σi)=∑i=1Nαi⋅p(x∣μi,Σi)=1(2π)n2|Σi|12exp{−12(x−μi)⊤Σ−1i(x−μi)}(1)(2)\begi...

2017-05-29 20:07:49

阅读数 284

评论数 0

贝叶斯线性回归小练习

根据上一篇博客贝叶斯线性回归(单输出)对贝叶斯线性回归的理解,随便找了某地区在售房房价随时间和面积的信息(如下所示),利用贝叶斯线性回归分别针对单变量线性基函数模型、单变量多项式基函数模型、单变量和双变量高斯基函数模型进行线性回归。

2017-05-26 22:09:35

阅读数 930

评论数 0

贝叶斯线性回归(单输出)

本文主要依据Pattern Recognition and Machine Learing第三章的内容展开。1线性模型假设有一个 DD 维的输入 x\mathbf x,和一个连续的目标输出 tt,我们可以利用一组固定的基函数ϕi(x),i=0,…,M\phi_i(\mathbf x),i=0,\l...

2017-05-26 20:05:54

阅读数 657

评论数 0

机器学习-周志华-个人练习12.4

12.4 试证明,Rd\mathbb R^d空间中线性超平面构成的假设空间的VC维是d+1。本题参考了四去六进一的一些想法,用自己的想法更加详细地描述出来。首先,我们假设在Rd\mathbb R^d空间中存在一组正交单位向量,使得此空间内任意一点的坐标可以表示为(x1,x2,…,xd)T(x_1,...

2017-05-21 17:28:33

阅读数 518

评论数 0

高斯基函数线性组合回归练习——sklearn库高斯过程回归

本题纯粹用作练习,无任何其他意义。 采用高斯基函数作为线性回归模型,用sklearn.gaussian_process.GaussianProcessRegressor可以进行回归,顺便学习画3D图。 代码如下: # -*- coding: utf-8 -*- import numpy as...

2017-05-17 22:20:40

阅读数 4779

评论数 0

机器学习-周志华-个人练习11.3

11.3 Relief算法是分别考察每个属性的重要性。试设计一个能考虑每一对属性重要性的改进算法。首先,我们知道单属性对应的统计量计算公式如下: δj=∑i(−diff(xji,xji,nh)2+diff(xji,xji,nm)2)\displaystyle\delta^j=\sum_{i}\l...

2017-05-16 20:17:51

阅读数 429

评论数 0

机器学习-周志华-个人练习11.1

11.1 试编程实现Relief算法,并考察其在西瓜数据集3.0上的运行结果。 本题采用Relief算法处理二分类任务,虽然书上只要求对连续属性归一化,但我将离散属性的值转化为了1,2,3,如果不对离散属性归一化,显然在查找近邻时连续属性不能有效发挥作用,因此需要将数据的离散属性和连续属性都进行...

2017-05-15 21:52:03

阅读数 610

评论数 1

机器学习-周志华-个人练习10.6

10.6 试使用MATLAB中的PCA 函数对Yale人脸数据集进行降维,并观察前20个特征向量所对应的图像。 为了便于练习,未使用MATLAB,而是用了scikit-learn.decomposition模块下的PCA进行练习。书上给的Yale人脸数据集访问有点慢(貌似被墙了),我重新上传了一...

2017-05-14 15:57:39

阅读数 857

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭