这道题目是我为SCU11届校赛初赛出的题目,最裸的卡特兰数,就一个公式解决问题,可见我之水
卡特兰数: h0=1 h1=1 h(n)=((4*n-2)/(n+1))*h(n-1);
给出前30个卡特兰数
1
2
5
14
42
132
429
1430
4862
16796
58786
208012
742900
2674440
9694845
35357670
129644790
477638700
1767263190
6564120420
24466267020
91482563640
343059613650
1289904147324
4861946401452
18367353072152
69533550916004
263747951750360
1002242216651368
3814986502092304
#include<stdio.h>
int main()
{
int t;
scanf("%d",&t);
__int64 a[31];
a[1]=1;
a[2]=2;
for(int i=3;i<31;i++)
a[i]=a[i-1]*(4*i-2)/(i+1);
while(t--)
{
int n;
scanf("%d",&n);
printf("%I64d\n",a[n]);
}
return 0;
}
下面来自百度百科:
h0=1 h1=1
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
SOJ 4171
#include<stdio.h>
#include<string.h>
#define mod 1000000
long long f[1010];
int main()
{
int i,j;
memset(f,0,sizeof(0));
f[0]=1;
f[1]=1;
for(i=2;i<1010;i++)
{
for(j=0;j<i;j++)
{
f[i]=(f[i]+(f[j]%mod)*(f[i-1-j]%mod))%mod;
}
}
int n;
while(scanf("%d",&n)==1&&n)
{
printf("%d\n",f[n]%mod);
}
return 0;
}