HDU 1878 欧拉回路

如果一个无向图是连通的,且最多只有2个奇点,则一定存在欧拉道路,如果两个奇点,则必须从其中一个奇点出发,另一个奇点终止

如果奇点不存在,则可以从任意点出发,最终一定会回到该点,称为欧拉回路

 

有向图:最多只能有2个点的入度不等于出度,而且必须是其中一个点的出度恰好比入度大一(起点),另一个点的入度比出度大一(重点),前提是在忽略边的方向

后 ,图是连通的

 

所以找欧拉回路的先判断连通性,再比较出入度

 

 #include<stdio.h>
#include<string.h>
int map[1010][1010];
int deg[1010];
int fa[1010];
int find(int x)
{
    if(x!=fa[x])
    fa[x]=find(fa[x]);
    return fa[x];
}
int main()
{
    int n,m;
    while(scanf("%d",&n)==1&&n)
    {
        scanf("%d",&m);
        int i,j;
        int u,v;
        memset(deg,0,sizeof(deg));
        memset(map,0,sizeof(map));
        for(i=1;i<=n;i++)
        fa[i]=i;
        for(i=0;i<m;i++)
        {
           scanf("%d%d",&u,&v);
           deg[u]++;
           deg[v]++;
           int fu=find(u);
           int fv=find(v);
           if(fu!=fv)
           fa[fu]=fv;
        }
        int lian=1;
        int x=find(1);
        for(i=2;i<=n;i++)
        {
           if(find(i)!=x)
           {
             lian=0;
             break;
           }
        }   
        int flag=0;
        for(i=1;i<=n;i++)
        {
              if(deg[i]%2==1)
              {
                flag=1;
                break;
              }
         }
         if(flag==0&&lian==1)
         printf("1\n");
         else
         printf("0\n");
    }
    return 0;
}
           
           


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值