如果一个无向图是连通的,且最多只有2个奇点,则一定存在欧拉道路,如果两个奇点,则必须从其中一个奇点出发,另一个奇点终止
如果奇点不存在,则可以从任意点出发,最终一定会回到该点,称为欧拉回路
有向图:最多只能有2个点的入度不等于出度,而且必须是其中一个点的出度恰好比入度大一(起点),另一个点的入度比出度大一(重点),前提是在忽略边的方向
后 ,图是连通的
所以找欧拉回路的先判断连通性,再比较出入度
#include<stdio.h>
#include<string.h>
int map[1010][1010];
int deg[1010];
int fa[1010];
int find(int x)
{
if(x!=fa[x])
fa[x]=find(fa[x]);
return fa[x];
}
int main()
{
int n,m;
while(scanf("%d",&n)==1&&n)
{
scanf("%d",&m);
int i,j;
int u,v;
memset(deg,0,sizeof(deg));
memset(map,0,sizeof(map));
for(i=1;i<=n;i++)
fa[i]=i;
for(i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
deg[u]++;
deg[v]++;
int fu=find(u);
int fv=find(v);
if(fu!=fv)
fa[fu]=fv;
}
int lian=1;
int x=find(1);
for(i=2;i<=n;i++)
{
if(find(i)!=x)
{
lian=0;
break;
}
}
int flag=0;
for(i=1;i<=n;i++)
{
if(deg[i]%2==1)
{
flag=1;
break;
}
}
if(flag==0&&lian==1)
printf("1\n");
else
printf("0\n");
}
return 0;
}