pandas中,一次性删除dataframe的多个列

本文通过实例演示了如何正确地在Pandas DataFrame中删除指定的列。作者最初尝试使用`drop`方法直接删除列但未达到预期效果,随后介绍了正确的做法,并提供了具体的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前沉迷于使用index删除,然而发现pandas貌似有bug?

 
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(12).reshape(3,4),
                      columns=['A', 'B', 'C', 'D'])

x=[1,2]
df.drop(index=[1,2], axis=1, inplace=True)  #axis=1,试图指定列,然并卵

print df

输出为

   A  B  C  D
0  0  1  2  3   还是按照行进行了删除

后来请教大神得知,可以用:

df.drop(df.columns[x], axis=1, inplace=True) 的方法。
 
即:
 
import pandas as pd 
import numpy as np 
df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) 
x=[1,2] df.drop(df.columns[x], axis=1, inplace=True) 
print (df)

​
的方法删除。输出结果符合预期

​

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值