【图染色】ZOJ 2066

20 篇文章 0 订阅

很简单,先根据每个人选择情况建一个无向图,然后标记染色,有相邻边的不能染成同种颜色!

原来标准时先对度排序,再染色。。。没有排序都可以过,这种算法叫Welch Powell算法,自己加上度的排序吧~

用Welch Powell 算法进行图着色的步骤如下:

(1)将G的结点按照度数的递减次序进行排列.(这种排列可能并不是唯一的,因为有些点有相同的度数).
(2)用第一种颜色对第一点进行着色,并且按排列次序,对与前面着色点不邻接的每一点着上同样的颜色.
(3)用第二种颜色对尚未着色的点重复(2),用第三种颜色继续这种做法,直到所有的点全部着上色为止.

注:Welch Powell 算法只能算出用最小几色,不能求出最大不矛盾点有哪几个!

#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <deque>
#include <stack>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <limits.h>
#include <time.h>

using namespace std;

int lowbit(int t){return t&(-t);}
int countbit(int t){return (t==0)?0:(1+countbit(t&(t-1)));}
int gcd(int a,int b){return (b==0)?a:gcd(b,a%b);}
#define LL long long
#define PI acos(-1.0)
#define N  201
#define MAX INT_MAX
#define MIN INT_MIN
#define eps 1e-8
#define FRE freopen("a.txt","r",stdin)

struct node{
    int color;
    int du;
}p[N];
int n,m;
int g[N][N];
int ans;
bool cmp(node a,node b){
    return a.du>b.du;
}
void gao(){
    int i,j,k,co;
    for(i=1;i<=n;i++){
        if(p[i].color)continue;
        for(co=1;co<=n;co++){
            for(j=1;j<=n;j++){
                if(g[i][j] && co==p[j].color)break;
            }
            if(j>n)break;
        }
        p[i].color=co;
        if(ans<co)ans=co;
    }
}
int main(){
    int t;
    while(scanf("%d%d",&n,&m)!=EOF){
        int i,j,k;
        memset(g,0,sizeof(g));
        for(i=0;i<m;i++){
            int a,b;
            scanf("%d%d",&a,&b);
            g[a][b]=g[b][a]=1;
        }
        for(i=1;i<=n;i++){
            p[i].du=0;
            for(j=1;j<=n;j++){
                if(g[i][j])
                p[i].du++;
            }
            p[i].color=0;
        }
        sort(p+1,p+1+n,cmp);
        ans=0;
        gao();
        printf("%d\n",ans);
    }
    return 0;
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值