很简单,先根据每个人选择情况建一个无向图,然后标记染色,有相邻边的不能染成同种颜色!
原来标准时先对度排序,再染色。。。没有排序都可以过,这种算法叫Welch Powell算法,自己加上度的排序吧~
用Welch Powell 算法进行图着色的步骤如下:
(1)将图G的结点按照度数的递减次序进行排列.(这种排列可能并不是唯一的,因为有些点有相同的度数).
(2)用第一种颜色对第一点进行着色,并且按排列次序,对与前面着色点不邻接的每一点着上同样的颜色.
(3)用第二种颜色对尚未着色的点重复(2),用第三种颜色继续这种做法,直到所有的点全部着上色为止.
注:Welch Powell 算法只能算出用最小几色,不能求出最大不矛盾点有哪几个!
#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <deque>
#include <stack>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <limits.h>
#include <time.h>
using namespace std;
int lowbit(int t){return t&(-t);}
int countbit(int t){return (t==0)?0:(1+countbit(t&(t-1)));}
int gcd(int a,int b){return (b==0)?a:gcd(b,a%b);}
#define LL long long
#define PI acos(-1.0)
#define N 201
#define MAX INT_MAX
#define MIN INT_MIN
#define eps 1e-8
#define FRE freopen("a.txt","r",stdin)
struct node{
int color;
int du;
}p[N];
int n,m;
int g[N][N];
int ans;
bool cmp(node a,node b){
return a.du>b.du;
}
void gao(){
int i,j,k,co;
for(i=1;i<=n;i++){
if(p[i].color)continue;
for(co=1;co<=n;co++){
for(j=1;j<=n;j++){
if(g[i][j] && co==p[j].color)break;
}
if(j>n)break;
}
p[i].color=co;
if(ans<co)ans=co;
}
}
int main(){
int t;
while(scanf("%d%d",&n,&m)!=EOF){
int i,j,k;
memset(g,0,sizeof(g));
for(i=0;i<m;i++){
int a,b;
scanf("%d%d",&a,&b);
g[a][b]=g[b][a]=1;
}
for(i=1;i<=n;i++){
p[i].du=0;
for(j=1;j<=n;j++){
if(g[i][j])
p[i].du++;
}
p[i].color=0;
}
sort(p+1,p+1+n,cmp);
ans=0;
gao();
printf("%d\n",ans);
}
return 0;
}