【概率dp】POJ 2151

http://poj.org/problem?id=2151

题意:有M道题,T支队,给出每支队ac每道题的概率,问每支队ac至少1道题并且冠军ac的题数>=N的概率。

方法:先对每支队进行dp,设dp[i][j]表示前i题ac了j题的概率,转移方程:dp[i][j] = dp[i-1][j]*(1-p[i])+dp[i-1][j-1]*p[i];p[i]表示该队aci题的概率,至于要回答题目所问的概率,就要联系到集合,因为所有队ac至少1道题概率包含了冠军ac的题数>=N的概率,所以前者-后者的补就是答案,初始化要注意

int M,T,N;
double p[33];
double dp[1001][33][33];
void gao(int r){
    int i,j,k;
    for(i=1;i<=M;i++){
        for(j=i+1;j<=M;j++){
            dp[r][i][j] = 0.0;
        }
    }
    for(i=1;i<=M;i++){
        for(j=0;j<=i;j++){
            if(j == 0)dp[r][i][0] = dp[r][i-1][0]*(1-p[i]);
            else
            dp[r][i][j] = dp[r][i-1][j]*(1-p[i])+dp[r][i-1][j-1]*p[i];
        }
    }
}
int main(){
    while(scanf("%d%d%d",&M,&T,&N) && (M+N+T)){
        int i,j;
        for(i=1;i<=T;i++){
            for(j=1;j<=M;j++){
                scanf("%lf",&p[j]);
            }
            dp[i][0][0] = 1.0;//前0题过了0题要初始化为1
            gao(i);
        }
        double a = 1.0;
        double b = 1.0;
        for(i=1;i<=T;i++){
            a*=1-dp[i][M][0];
            double tmp = 0.0;
            for(j=1;j<N;j++){
                tmp+=dp[i][M][j];
            }
            b*=tmp;
        }
        printf("%.3f\n",a-b);
    }
    return 0;
}


















  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值