深度学习小知识
文章平均质量分 66
你好啊:)
这个作者很懒,什么都没留下…
展开
-
【深度学习小知识】K-means聚类
K-means聚类及相关理论介绍什么是K-Means聚类方法二级目录什么是K-Means聚类方法将Kmeans聚类分为两部分进行介绍:聚类:所谓聚类就是将数据集中的数据,根据某部分特性进行类别的划分。聚类流程:- 数据准备,将需要聚类的数据集进行一些预处理,如归一化、正则化、降维等- 特征选取,定义需要聚类的特征,比如狗的分类中,都有尖尖的耳朵。- 特征提取,提取到关键的特征- 聚类,根据类似特征,对数据进行分类- 效验,对最终聚类的结果进行效验并调整Kmeans:kmeans就是经典原创 2021-10-26 09:12:21 · 1546 阅读 · 0 评论 -
【深度学习小知识】目标检测中的IOU、GIOU、DIOU、CIOU、EIOU等理论解析
IOU、GIOU、DIOU、CIOU解析IOUIOU原理IOU LossIOU存在问题GIOUGIOU原理DIOUCIOU首先明确IOU系列的提出原因,即衡量预测框与真实框的关系。IOUIOU原理图中,红色框表示为预测框,绿色表示为真实框(标注框)。IOU就是计算真实框与红色框的交并比,具体流程如下:计算真实框与预测框的交集计算真实框与预测框的并集计算交并比IOU Loss明白IOU原理后,进一步看一下IOU loss:IOU loss 将四个点构成的bbox,作为原创 2021-10-11 10:15:21 · 11319 阅读 · 6 评论 -
【深度学习小知识】ROI到ROI pooling 再到ROI Align
ROI!RoI Pooling!ROI详解RoI Pooling详解Pooling操作ROI poolingROI Align详解ROI详解Region of interest(ROI),中文译为感兴趣区域。在计算机视觉领域,从输入的图像中框选处理待处理的区域就是ROI。ROI / Region proposals大致过程:输入一张图片在图片中找到物体/目标(objects)的所有位置输出/获得这些一系列的objects的bounding box.RoI Pooling详解Pooli原创 2021-09-10 15:46:27 · 7419 阅读 · 0 评论 -
【深度学习小知识】训练与推理阶段
神经网络的训练与推理阶段训练阶段推理阶段训练阶段训练阶段:是神经网络在输入数据,通过数据和对应标签不断调整权重的过程,即生成模型的过程。推理阶段推理阶段:当网络训练完毕后(权重不更新),输入数据后神经网络对其进行处理(比如输入猫的图片,神经网络将图片分类为猫),即模型开始工作进行预测。...原创 2021-09-07 15:21:45 · 3022 阅读 · 0 评论 -
【深度学习小知识】sigmoid和softmax的纠葛
Sigmoid 与 Softmax 详解Sigmoid是什么?Softmax是什么?Sigmoid是什么?首先看一下sigmoid的函数表达式和对应函数图像,会发现sigmoid函数的可以将输入的值限定在(0,1)之间。下面是sigmoid的函数表达式:这里只用python实现sigmoid函数图形:实现代码如下:import matplotlib.pyplot as plt import numpy as npx = np.arange(-10,10,0.2)y = 1.0 /(1.原创 2021-09-07 14:57:34 · 386 阅读 · 0 评论