【深度学习小知识】目标检测中的IOU、GIOU、DIOU、CIOU、EIOU等理论解析


首先明确IOU系列的提出原因,即衡量预测框与真实框的关系。

IOU

IOU原理

在这里插入图片描述
图中,红色框表示为预测框,绿色表示为真实框(标注框)。IOU就是计算真实框与红色框的交并比,具体流程如下:

  • 计算真实框与预测框的交集
    在这里插入图片描述

  • 计算真实框与预测框的并集
    在这里插入图片描述

  • 计算交并比
    IOU =

IOU Loss

明白IOU原理后,进一步看一下IOU loss:IOU loss 将四个点构成的bbox,作为整体进行回归。设置(xt, xb, xl, xr)进行计算,反应真实框和预测框的关系。
Iou loss = 1 - iou
具体如下图所示:
在这里插入图片描述

IOU特点

IOU作用

  • 可以反映预测检测框与真实检测框的检测效果
  • 尺度不变性,也就是对尺度不敏感(scale invariant), 在regression任务中,判断predict box和gt的距离最直接的指标就是IoU。(满足非负性;同一性;对称性;三角不等性)

IOU问题

  • 无法进行梯度回传;loss = 1- IOU ,但IOU=0时(两框不想交)。

  • 无法判断预测框与真实框之间的距离;只要不想交,IOU均为0
    在这里插入图片描述

  • 无法衡量两个框之间的相交方式
    在这里插入图片描述

  • 无法精确判断两种的重合度大小,如下图所示,三种情况IoU都相等,但看得出来他们的重合度是不一样的,左边的图回归的效果最好,右边的最差。
    在这里插入图片描述

GIOU

GIOU原理

GIOU的具体计算流程如下

  • 计算IOU

  • 在这里插入图片描述

  • 计算同时包含预测框和真实框的最小矩形框的面积–A
    在这里插入图片描述

  • A - Union
    在这里插入图片描述

  • (A - Union)/A
    -在这里插入图片描述

  • GIOU = IOU - (A - Union)/A
    在这里插入图片描述

GIOU LOSS

  • GIOU Loss = 1 - GIOU

GIOU的特点

GIOU的作用

  • 对于相交的框,IOU可以被反向传播,即它可以直接用作优化的目标函数。但是非相交的,梯度将会为0,无法优化。此时使用GIoU可以完全避免此问题。所以可以作为目标函数
  • 可以分辨框的对齐方式
  • IoU取值[0,1],但GIoU有对称区间,取值范围[-1,1]。在两者重合的时候取最大值1,在两者无交集且无限远的时候取最小值-1,因此GIoU是一个非常好的距离度量指标
  • GIOU关注的不只是重叠区域,还有其他的非重叠区域

GIOU的问题

  • GIoU对scale不敏感
  • GIoU是IoU的下界,在两个框无限重合、在内部等情况下,IoU=GIoU=1,如下图所示:
    在这里插入图片描述

DIOU

DIOU的提出主要是针对IOU和GIOU中存在的问题:

  1. 直接最小化anchor框与目标框之间的归一化距离是否可行,以达到更快的收敛速度?
  2. 如何使回归在与目标框有重叠甚至包含时更准确、更快

DIOU实现

如下面公式所示,为DIOU的计算过程
在这里插入图片描述
具体流程如下:

  • 计算IOU
  • 计算两个框之间的中心点的欧氏距离
  • 计算最小必报区域的对角线距离

其中d和c如下图所示:
在这里插入图片描述

DIOU特点

  • 与GIoU loss类似,DIoU loss在与目标框不重叠时,仍然可以为边界框提供移动方向。
  • DIoU loss可以直接最小化两个目标框的距离,而GIOU loss优化的是两个目标框之间的面积,因此比GIoU loss收敛快得多。
  • 对于包含两个框在水平方向和垂直方向上这种情况,DIoU损失可以使回归非常快,而GIoU损失几乎退化为IoU损失

CIOU

Ciou的改进在于,回归框三要素中的长宽比进行了考虑;CIOU在DIOU的基础上,加入了长宽比进行改进。
在这里插入图片描述
(a 是权重函数,v用来度量长宽比的相似性)
在这里插入图片描述

EIOU

CIOU Loss虽然考虑了边界框回归的重叠面积、中心点距离、纵横比。
但是通过其公式中的v反映的纵横比的差异,而不是宽高分别与其置信度的真实差异,所以有时会阻碍模型有效的优化相似性。
在CIOU的基础上将纵横比拆开,提出了EIOU Loss,并且加入Focal聚焦优质的锚框
在这里插入图片描述
##EIOU 作用

  • 将纵横比的损失项拆分成预测的宽高分别与最小外接框宽高的差值,加速了收敛提高了回归精度。
  • 引入了Focal Loss优化了边界框回归任务中的样本不平衡问题,即减少与目标框重叠较少的大量锚框对BBox
    回归的优化贡献,使回归过程专注于高质量锚框
  • 13
    点赞
  • 90
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
### 回答1: IoU (Intersection over Union)是计算两个区域重叠的程度的一种指标,常用于目标检测评估预测框和真实框的匹配情况。 IoU可以有以下几种变形: - mIoU(mean IoU):对于数据集所有样本,计算每一类的IoU并取平均值。 - gIoU(generalized IoU):对于两个区域A、B,gIoU计算如下:gIoU(A,B) = IoU(A,B) - IoU(A,B') + 1,其B'是与B不相交的区域。 - cIoU(complete IoU):对于两个区域A、B,cIoU计算如下:cIoU(A,B) = IoU(A,B) - IoU(A,B') - IoU(A',B) + IoU(A',B') + IoU(A,B),其A'、B'是与A、B不相交的区域。 - CIoU(confidence IoU):CIoUcIoU的基础上再加入了预测框的置信度因素,公式如下:CIoU(A,B) = cIoU(A,B) - p2 * v(A) / (v(A) + v(B)),其p2是置信度的超参数,v(A)和v(B)分别表示区域A、B的面积。 常见的目标检测任务常常使用mIoU作为性能度量指标。 ### 回答2: 目标检测的交并比(IOU)是一种衡量检测框与真实框之间重叠程度的指标。在目标检测任务IOU通常用来评估检测结果的准确性。 在实际应用,研究者对IOU进行了一些变形和扩展,以更好地适应不同的场景和需求。 1. GIOU(Generalized Intersection over Union):GIOU是对IOU的一种改进,考虑了目标框的尺寸和位置信息,同时考虑了检测框和真实框之间的平移和缩放关系。 2. DIOU(Distance-IoU):DIOU基于IOU和目标框的心距离进行了修改。它考虑了物体的大小和位置信息,并通过计算心距离来惩罚检测框与真实框之间的重叠不足。 3. CIOU(Complete-IoU):CIOU是对DIOU的改进,它还考虑了宽高比的一致性。CIOU通过计算对角线距离来衡量两个框之间的距离,从而更好地描述检测框和真实框之间的相似度。 以上是目标检测常用的IOU变形的汇总。这些改进方法能够更准确地评估检测结果的质量,并帮助提升目标检测算法的性能和准确性。研究者们不断尝试更多的变体,并希望能够找到更好的方式来衡量目标检测的结果。 ### 回答3: 目标检测的Intersection over Union(IoU)是一种常用的评估指标,用于衡量预测框与真实标注框之间的重叠程度。除了传统的IoU指标外,还有一些关于IoU的变形方法。 首先是GIoU(Generalized IoU),它通过计算预测框与真实标注框的最小闭包矩形(minimum enclosing rectangle,MER)的面积和真实标注框的面积之比来进行衡量。相比传统的IoUGIoU考虑了预测框与真实标注框之间的位置偏移,能够更好地评估不同形状的目标。 接下来是DIoU(Distance IoU),它在GIoU的基础上还考虑了预测框与真实标注框之间的心点距离。DIoU可以有效地解决多目标检测的crowding问题,改进了目标之间的重叠度量。 还有CIoU(Complete IoU),它在DIoU的基础上进一步考虑了长宽比的相似性。CIoU使用一个参数来衡量长宽比的差异,可以更加准确地评估目标的匹配程度。 此外,还有EIoU(Efficient IoU)等其他变形方法,它们主要通过改进IoU的计算方式来提高检测算法的效率。 总的来说,这些IoU的变形方法在目标检测起到了衡量目标检测精度的作用,能够更好地评估预测框与真实标注框之间的重叠程度,从而提高目标检测算法的准确性和稳定性。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值