038.顺序存储二叉树的原理和实现


博主的 Github 地址


1. 顺序存储二叉树的概念

1.1. 基本说明

从数据存储来看, 数组存储方式和树的存储方式可以互相转换,
即数组可以转换成树, 树也可以转换成数组, 如下示意图所示.

arr2tree

1.2. 操作要求

  1. 上图的二叉树的结点, 要求以数组的方式进行存放,
    即存储为数组 arr = [1,2,3,4,5,6,7]

  2. 要求在遍历数组 arr 时, 仍可以用遍历二叉树的方式进行,
    即可以用前序遍历, 中序遍历和后序遍历的方式完成结点遍历.

1.3. 结构特点

  • 顺序二叉树通常只考虑完全二叉树
  • 用 n 表示二叉树中的第几个元素
    (编号从 0 开始, 实际就是结点对应的数组下标)
  • 第 n 个元素的左子结点为 2*n+1
  • 第 n 个元素的右子结点为 2*n+2
  • 第 n 个元素的父结点为 (n-1)/2
1.3.1. 示例

sample

  • 如上图所示, 当前结点为 3 号结点, 对应的数组下标为 2,
    • 它的左子结点对应的数组下标为 2*2+1=5,
    • 它的右子结点对应的数组下标为 2*2+2=6,
    • 它的父结点对应的数组下标为 (2-1)/2=0.

2. 遍历顺序存储二叉树的代码实现

  • 实际上是在数组中实现二叉树遍历
  • 目前数组大小只考虑完全二叉树对应结点个数
  • arrlength
  • 不过即便不传完全二叉树也能运行

2.1. 数组二叉树类

  • 遍历方法定义在类的成员方法中, 包括前序中序和后序遍历
package com.leo9.dc23.array_binary_tree;

//编写一个类实现顺序存储二叉树遍历
public class ArrayBinaryTree {
    //定义成员变量用以接收数组二叉树
    private int[] arr_btree;

    public ArrayBinaryTree(int[] arr_btree) {
        this.arr_btree = arr_btree;
    }

    //定义setter方法用以接收数组
    public void setArr_btree(int[] arr_btree) {
        this.arr_btree = arr_btree;
    }

    //region 编写方法来完成顺序存储二叉树的遍历
    //1.完成前序遍历的方法, 需要传入每次开始结点的下标
    public void preOrder(int begin_num){
        //输出当前结点
        System.out.printf("node[no=%d, val=%d]\n", begin_num, arr_btree[begin_num]);

        //判断当前结点的左子结点 2*n+1 是否存在
        //只要小于等于数组下标最大值, 结点就存在
        if(2*begin_num+1 <= arr_btree.length-1){
            preOrder(2*begin_num+1);
        }

        //判断当前结点的右子结点 2*n+2 是否存在
        //只要小于等于数组下标最大值, 结点就存在
        if(2*begin_num+2 <= arr_btree.length-1){
            preOrder(2*begin_num+2);
        }
    }

    //2.完成中序遍历的方法, 需要传入每次开始结点的下标
    public void infixOrder(int begin_num){
        //判断当前结点的左子结点 2*n+1 是否存在
        //只要小于等于数组下标最大值, 结点就存在
        if(2*begin_num+1 <= arr_btree.length-1){
            infixOrder(2*begin_num+1);
        }

        //输出当前结点
        System.out.printf("node[no=%d, val=%d]\n", begin_num, arr_btree[begin_num]);

        //判断当前结点的右子结点 2*n+2 是否存在
        //只要小于等于数组下标最大值, 结点就存在
        if(2*begin_num+2 <= arr_btree.length-1){
            infixOrder(2*begin_num+2);
        }
    }

    //3.完成后序遍历的方法, 需要传入每次开始结点的下标
    public void postOrder(int begin_num){
        //判断当前结点的左子结点 2*n+1 是否存在
        //只要小于等于数组下标最大值, 结点就存在
        if(2*begin_num+1 <= arr_btree.length-1){
            postOrder(2*begin_num+1);
        }

        //判断当前结点的右子结点 2*n+2 是否存在
        //只要小于等于数组下标最大值, 结点就存在
        if(2*begin_num+2 <= arr_btree.length-1){
            postOrder(2*begin_num+2);
        }

        //输出当前结点
        System.out.printf("node[no=%d, val=%d]\n", begin_num, arr_btree[begin_num]);
    }
    //endregion
}

2.2. 测试类

package com.leo9.dc23.array_binary_tree;

public class TestDemoABT {
    public static void main(String[] args) {
        int[] test_array = {1,2,3,4,5,6,7};
        ArrayBinaryTree arr_tree = new ArrayBinaryTree(test_array);
        System.out.println("======test preOrder======");
        arr_tree.preOrder(0);
        System.out.println("======test infixOrder======");
        arr_tree.infixOrder(0);
        System.out.println("======test postOrder======");
        arr_tree.postOrder(0);
    }
}

2.3. 测试结果

  • no 为结点对应的数组下标, val 为结点值
2.3.1. 前序遍历

preOrder

2.3.2. 中序遍历

infixOrder

2.3.3. 后序遍历

postOrder

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值