超分辨率方法的比较——插值、重构、学习

1. Interpolation-based methods        2. Refactoring-based methods        3. Learning-based methods


前言

参考论文:Remote Sensing | Free Full-Text | Improved SRGAN for Remote Sensing Image Super-Resolution Across Locations and SensorsDetailed and accurate information on the spatial variation of land cover and land use is a critical component of local ecology and environmental research. For these tasks, high spatial resolution images are required. Considering the trade-off between high spatial and high temporal resolution in remote sensing images, many learning-based models (e.g., Convolutional neural network, sparse coding, Bayesian network) have been established to improve the spatial resolution of coarse images in both the computer vision and remote sensing fields. However, data for training and testing in these learning-based methods are usually limited to a certain location and specific sensor, resulting in the limited ability to generalize the model across locations and sensors. Recently, generative adversarial nets (GANs), a new learning model from the deep learning field, show many advantages for capturing high-dimensional nonlinear features over large samples. In this study, we test whether the GAN method can improve the generalization ability across locations and sensors with some modification to accomplish the idea “training once, apply to everywhere and different sensors” for remote sensing images. This work is based on super-resolution generative adversarial nets (SRGANs), where we modify the loss function and the structure of the network of SRGANs and propose the improved SRGAN (ISRGAN), which makes model training more stable and enhances the generalization ability across locations and sensors. In the experiment, the training and testing data were collected from two sensors (Landsat 8 OLI and Chinese GF 1) from different locations (Guangdong and Xinjiang in China). For the cross-location test, the model was trained in Guangdong with the Chinese GF 1 (8 m) data to be tested with the GF 1 data in Xinjiang. For the cross-sensor test, the same model training in Guangdong with GF 1 was tested in Landsat 8 OLI images in Xinjiang. The proposed method was compared with the neighbor-embedding (NE) method, the sparse representation method (SCSR), and the SRGAN. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were chosen for the quantitive assessment. The results showed that the ISRGAN is superior to the NE (PSNR: 30.999, SSIM: 0.944) and SCSR (PSNR: 29.423, SSIM: 0.876) methods, and the SRGAN (PSNR: 31.378, SSIM: 0.952), with the PSNR = 35.816 and SSIM = 0.988 in the cross-location test. A similar result was seen in the cross-sensor test. The ISRGAN had the best result (PSNR: 38.092, SSIM: 0.988) compared to the NE (PSNR: 35.000, SSIM: 0.982) and SCSR (PSNR: 33.639, SSIM: 0.965) methods, and the SRGAN (PSNR: 32.820, SSIM: 0.949). Meanwhile, we also tested the accuracy improvement for land cover classification before and after super-resolution by the ISRGAN. The results show that the accuracy of land cover classification after super-resolution was significantly improved, in particular, the impervious surface class (the road and buildings with high-resolution texture) improved by 15%.https://www.mdpi.com/2072-4292/12/8/1263


一、基本介绍

图像超分辨率模型的基本假设是,如果低空间分辨率图像遵循与创建低空间分辨率图像相同的重采样过程,则低空间分辨率图像中的缺失细节可以被重建或从其他高空间分辨率图像中学习。基于这一假设,近十年来,人们一直致力于精确预测点扩散函数(point spread function, PSF),它代表了形成低分辨率像素的混合过程。主要有三组方法:1)基于插值的方法,2)基于重构的方法,3)基于学习的方法。

1、基于插值的方法

首先,基于插值的方法是基于一定的数学策略,从相关点计算出待恢复目标点的像素值,具有低复杂度和高效率的特点。但结果图像的边缘效应明显,插值过程中没有产生新的信息,无法恢复图像的细节。

2、基于重构的方法

其次,基于重构的方法对成像过程进行建模,整合来自同一场景的不同信息,获得高质量的重构结果。通常,这些方法以时间差异换取空间分辨率的提高,这通常需要预先注册和大量的计算。

3、基于学习的方法

第三,基于学习的方法[12-20]通过确定重建方法的分辨率提高倍数,克服了困难的局限性,可以面向单幅图像,这是目前超分辨率重建的主要发展方向。在这一类中,常用的方法有近邻嵌入方法(NE)、稀疏表示方法(SCSR)和深度学习方法。

二、方法比较

方法类型基本假设代表模型优点缺点
基于插值的方法当前像素的值可以用附近的像素表示

The nearest neighbor interpolation

低复杂度,高效率没有图像纹理细节可以预测,通常使图像看起来更平滑
The bilinear interpolation
The bicubic interpolation
基于重构的方法通过图像可以恢复其物理性质和特征点扩展函数(PSF)的这些规则可以进一步应用于细节恢复Joint MAP registration将同一场景中的不同信息进行融合,获得高质量的信息重建结果需要预注册,计算量大
Sparse regression and natural image prior
Kernel regression
PSF deconvolution
基于学习的方法通过对大量图像样本的学习,可以得到点扩展函数Neighbor-embedding (NE)当训练样本更接近目标图像时获得更好的性能,当涉及大量样本时可以获得更高的PSNR这非常耗时,需要大量的训练数据集,并且通常限制了跨数据集的模型泛化能力
Convolutional neural network (SRCNN)
Bayesian networks
Kernel-based methods
SVM-based methods
Sparse representation (SCSR)
SRGAN

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: Matlab超分辨率重构是指利用Matlab软件对低分辨率图像进行处理,从而提高其分辨率的一种技术。 在图像处理领域,超分辨率重构是一个重要的研究方向。由于图像的低分辨率会导致图像细节丢失,影响图像质量和可视性。因此,超分辨率重构技术的出现可以在一定程度上解决该问题。 Matlab作为一种强大的科学计算与数据可视化工具,具有丰富的图像处理函数和工具箱,可以用于实现超分辨率重构算法。 Matlab超分辨率重构通常包括以下几个步骤: 首先,读入低分辨率图像数据。可以通过imread函数读取图像文件,将其转化为Matlab中的图像矩阵。 然后,对图像进行预处理。包括去噪、图像增强等步骤。可以利用Matlab提供的滤波器函数、图像增强函数等对图像进行处理。 接下来,选择适当的超分辨率重构算法。常用的算法包括插值算法、基于稀疏表示的算法、深度学习算法等。 最后,根据选择的算法,对预处理后的图像进行超分辨率重构。例如,可以利用Matlab的imresize函数实现插值算法,利用图像处理工具箱中的函数实现其他算法。 需要注意的是,在进行超分辨率重构时,应根据具体应用场景和需求选择合适的算法和参数,以达到较好的效果。 总之,Matlab超分辨率重构是一种利用Matlab软件对低分辨率图像进行处理,提高图像分辨率的技术。通过适当的预处理和选择合适的重构算法,可以改善图像质量和可视性,适用于图像处理领域的研究和实际应用。 ### 回答2: Matlab是一门常用于科学计算和工程设计的编程语言,其强大的数学和图像处理功能使其成为图像超分辨率重构的理想工具。 图像超分辨率重构是一种通过一系列算法和技术提高图像分辨率的方法。在低分辨率图像中,由于像素数量有限,细节会变得模糊,这给图像分析和识别带来了挑战。超分辨率重构的目标是将低分辨率图像提高到高分辨率水平,以便更好地识别和分析图像。 使用Matlab进行图像超分辨率重构可以通过下列步骤实现: 1. 导入低分辨率图像:使用Matlab的图像处理工具箱中的函数,可以将低分辨率图像加载到Matlab环境中。 2. 图像预处理:低分辨率图像可能包含噪声和其他干扰。可以使用Matlab中的滤波器函数,如高斯滤波器或中值滤波器,来提取图像中的噪声以及其他干扰。 3. 超分辨率算法选择:根据图像的特点和需求,选择合适的超分辨率算法。一些常用的算法包括插值、图像金字塔、稀疏表示和机器学习等。 4. 应用超分辨率算法:使用Matlab实现所选择的超分辨率算法。根据算法的不同,可能需要使用Matlab中的矩阵操作、图像变换或者图像重建函数。 5. 后处理:通过Matlab中的调整函数,对重建后的图像进行亮度、对比度、饱和度等方面的调整,使图像看起来更自然。 6. 评估:使用Matlab中的图像质量评估工具,如PSNR和SSIM等指标,评估重建图像的质量。 7. 导出:将重建的高分辨率图像导出为所需的图像格式。 Matlab提供了丰富的图像处理函数和工具箱,使图像超分辨率重构过程更加高效和方便。通过合理选择算法和优化参数,使用Matlab进行图像超分辨率重构可以得到更精细、更清晰的图像,提供更好的图像分析和识别能力。 ### 回答3: MATLAB超分辨率重构是一种通过使用高分辨率图像和低分辨率图像之间的关系,来提高图像质量的方法。该方法基于插值和图像处理算法,可以在不增加额外信息的情况下,将低分辨率图像重建为高分辨率图像。 在MATLAB中,可以使用一些图像处理工具箱来实现超分辨率重构。首先,通过将低分辨率图像输入到算法中,并使用插值算法对图像进行处理,得到一个初始的高分辨率近似图像。然后,使用一个超分辨率重构算法,如基于样本的学习方法、稀疏编码方法深度学习方法,对初始图像进行优化,以提高图像的细节和清晰度。 超分辨率重构算法的核心思想是利用图像中的局部信息和统计特性,将低分辨率图像的信息转化为高分辨率图像的信息。通过不断迭代和优化,可以逐步提高生成图像的质量,并使其接近原始高分辨率图像。 然而,超分辨率重构并不是一个完美的过程,它可能会在一些细节和纹理上引入一些伪影和失真。因此,在使用超分辨率重构方法时,需要根据具体的应用场景和要求进行选择和调整,以获得最佳的重建效果。 总的来说,MATLAB超分辨率重构是一种有效的图像处理方法,可以将低分辨率图像重建为高分辨率图像。尽管存在一些限制和挑战,但通过选择合适的算法和参数设置,可以在很大程度上提高图像的质量和细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOYCE_Leo16

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值