同余概述

数学 上,两个 整数 除以同一个整数,若得相同 余数 ,则二整数 同余 (英文:Modular arithmetic;德文:Kongruenz)。同余 理论 常被用于 数论 中。最先引用同余的概念与符号者为 德国 数学家 高斯
同余

同余

同余理论是初等数论的重要组成部分,是研究整数问题的重要工具之一,利用同余来论证某些整除性的问题是很简便的.同余是数学竞赛的重要组成部分.

两个整数a,b,若它们除以整数m所得的余数相等,则称a与b对于m同余或a同余于b模m

记作a ≡ b (mod m)
读作a同余于b模m,或读作a与b关于模m同余。
比如 26 ≡ 2 (mod 12)
【定义】设m是大于1的正整数,a,b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余.
显然,有如下事实
(1)若a≡0(mod m),则m|a;
(2)a≡b(mod m)等价于a与b分别用m去除,余数相同.
【证明】 充分性:设a=mq1+r1,b=mq2+r2,0<=r1,r2<m
∵ m|(a-b),a-b=m(q1-q2)+(r1-r2).
则有m|(r1-r2).
∵0<=r1,r2<m,∴0<=|r1-r2|<m,
即r1-r2=0,∴r1=r2.
必要性:设a,b用m去除余数为r,即a=mq1+r,b=mq2+r,
a-b=m(q1-q2) ∴m|(a-b),
故a≡b(mod m).
性质:

反身性 a ≡ a (mod m)
对称性 若a ≡ b(mod m) 则b ≡ a (mod m)
传递性 若a ≡ b (mod m),b ≡ c (mod m),则a ≡ c (mod m)
4 同余式相加若a ≡ b (mod m),c≡d(mod m),则a+-c≡b+-d(mod m)
5 同余式相乘 若a ≡ b (mod m),c≡d(mod m),则ac≡bd(mod m)
除法若ac ≡ bc (mod m) c1=0 则 a≡ b (mod m/(c,m)) 其中(c,m)表示c,m的 最大公约数
特殊地 (c,m)=1 则a ≡ b (mod m)
乘方如果a ≡ b (mod m),那么a^n ≡ b^n (mod m)
7 若a ≡ b (mod m),n|m,则 a ≡ b (mod n)
8 若a ≡ b (mod mi) i=1,2...n 则 a ≡ b (mod [m1,m2,...mn]) 其中[m1,m2,...mn]表示m1,m2,...mn的 最小公倍数
设a,m∈N,(a,m)=1,则a^(φ(m))≡1(mod m)
(注:φ(m)指模m的 简系个数, φ(m)=m-1, 如果m是素数;φ(m=q1^r1 * q2^r2 * ...*qi^ri)=m (1-1/q1)(1-1/q2)...(1-1/qi))
推论费马小定理: 若p为 质数,则a^p ≡ a (mod p) 即a^(p-1) ≡ 1 (mod p)
(但是当p|a时不 等价
10 中国剩余定理
设整数m1,m2,m3,......,mn 两两 互素,令m=m1m2m3m4m5...mn(mi的连乘)。则对于任意的J在(1,n)整数,下列联立的 同余式有解:
{xj≡1(mod mj)
{xj≡0(mod mi) i不等于j
令x为从1到najxj的 ,则x适合下列联立同余式
x≡aj(mod mj), j=1,2,3,.....,n
另:求 自然数a的 个位数字,就是求a与哪一个一位数对于模10同余

定理3.4 若a,b,c是整数,m是正整数,且a=b(mod m)则

a + c = b + c ( mod m )

a - c = b - c ( mod m)

a*c = b*c (mod m)

定理3.5 若a,b,c,d为整数,m为正整数,若a = b(mod m) ,c = d (mod m)则

a*x + c*y = b*x + d*y  ( mod m )

a*c = b*d  ( mod m )

a^n = b^n  ( mod m ) n > 0 

证明 a*a = b*b  ( mod m ) -> a^n = b^n  ( mod m ) n > 0 

f(a) = f(b)  ( mod m )

定理3.6 设a,b,c,d为正整数,m为正整数 则

若a = b (mod m) 且 d | m 则 a = b (mod d)

若 a = b  (mod m)  则(a,m) = (b,m)

a = b (mod mi)(1 <= i <= n) 同时成立,当且仅当 a = b (mod [m1,m2,m3,m4......])

定理3.7 若a*c = b*c (mod m) 且 (c,m) = d 则 a = b (mod m/d)



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值