数学
上,两个
整数
除以同一个整数,若得相同
余数
,则二整数
同余
(英文:Modular arithmetic;德文:Kongruenz)。同余
理论
常被用于
数论
中。最先引用同余的概念与符号者为
德国
数学家
高斯
。
同余
同余理论是初等数论的重要组成部分,是研究整数问题的重要工具之一,利用同余来论证某些整除性的问题是很简便的.同余是数学竞赛的重要组成部分.
两个整数a,b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m
记作a ≡ b (mod m)
读作a同余于b模m,或读作a与b关于模m同余。
比如 26 ≡ 2 (mod 12)
【定义】设m是大于1的正整数,a,b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余.
显然,有如下事实
(1)若a≡0(mod m),则m|a;
(2)a≡b(mod m)等价于a与b分别用m去除,余数相同.
【证明】 充分性:设a=mq1+r1,b=mq2+r2,0<=r1,r2<m
∵ m|(a-b),a-b=m(q1-q2)+(r1-r2).
则有m|(r1-r2).
∵0<=r1,r2<m,∴0<=|r1-r2|<m,
即r1-r2=0,∴r1=r2.
必要性:设a,b用m去除余数为r,即a=mq1+r,b=mq2+r,
a-b=m(q1-q2) ∴m|(a-b),
故a≡b(mod m).
性质:
2
对称性 若a ≡ b(mod m) 则b ≡ a (mod m)
3
传递性 若a ≡ b (mod m),b ≡ c (mod m),则a ≡ c (mod m)
4 同余式相加若a ≡ b (mod m),c≡d(mod m),则a+-c≡b+-d(mod m)
5 同余式相乘 若a ≡ b (mod m),c≡d(mod m),则ac≡bd(mod m)
5
除法若ac ≡ bc (mod m) c1=0 则 a≡ b (mod m/(c,m)) 其中(c,m)表示c,m的
最大公约数
特殊地 (c,m)=1 则a ≡ b (mod m)
6
乘方如果a ≡ b (mod m),那么a^n ≡ b^n (mod m)
7 若a ≡ b (mod m),n|m,则 a ≡ b (mod n)
8 若a ≡ b (mod mi) i=1,2...n 则 a ≡ b (mod [m1,m2,...mn]) 其中[m1,m2,...mn]表示m1,m2,...mn的
最小公倍数
设a,m∈N,(a,m)=1,则a^(φ(m))≡1(mod m)
(注:φ(m)指模m的
简系个数, φ(m)=m-1, 如果m是素数;φ(m=q1^r1 * q2^r2 * ...*qi^ri)=m (1-1/q1)(1-1/q2)...(1-1/qi))
推论:
费马小定理: 若p为
质数,则a^p ≡ a (mod p) 即a^(p-1) ≡ 1 (mod p)
10 中国剩余定理
设整数m1,m2,m3,......,mn 两两
互素,令m=m1m2m3m4m5...mn(mi的连乘)。则对于任意的J在(1,n)整数,下列联立的
同余式有解:
{xj≡1(mod mj)
{xj≡0(mod mi) i不等于j
令x为从1到najxj的
和,则x适合下列联立同余式
x≡aj(mod mj), j=1,2,3,.....,n
定理3.4 若a,b,c是整数,m是正整数,且a=b(mod m)则
a + c = b + c ( mod m )
a - c = b - c ( mod m)
a*c = b*c (mod m)
定理3.5 若a,b,c,d为整数,m为正整数,若a = b(mod m) ,c = d (mod m)则
a*x + c*y = b*x + d*y ( mod m )
a*c = b*d ( mod m )
a^n = b^n ( mod m ) n > 0
证明 a*a = b*b ( mod m ) -> a^n = b^n ( mod m ) n > 0
f(a) = f(b) ( mod m )
定理3.6 设a,b,c,d为正整数,m为正整数 则
若a = b (mod m) 且 d | m 则 a = b (mod d)
若 a = b (mod m) 则(a,m) = (b,m)
a = b (mod mi)(1 <= i <= n) 同时成立,当且仅当 a = b (mod [m1,m2,m3,m4......])
定理3.7 若a*c = b*c (mod m) 且 (c,m) = d 则 a = b (mod m/d)