Go Benchmarks

http://lk4d4.darth.io/posts/bench/


Benchmarks

Benchmarks are tests for performance. It’s pretty useful to have them in project and compare results from commit to commit. Go has very good tooling for writing and executing benchmarks. In this article I’ll show how to use package testing for writing benchmarks.

How to write benchmark

It’s pretty easy in Go. Here is a simple benchmark:

func BenchmarkSample(b *testing.B) {
    for i := 0; i < b.N; i++ {
        if x := fmt.Sprintf("%d", 42); x != "42" {
            b.Fatalf("Unexpected string: %s", x)
        }
    }
}

Save this code to bench_test.go and run go test -bench=. bench_test.go. You’ll see something like this:

testing: warning: no tests to run
PASS
BenchmarkSample 10000000               206 ns/op
ok      command-line-arguments  2.274s

We see here that one iteration takes 206 nanoseconds. That was easy, indeed. There are couple of things more about benchmarks in Go, though.

What you can benchmark?

By default go test -bench=. tests only speed of your code, however you can add flag -benchmem, which will also test a memory consumption and an allocations count. It’ll look like:

PASS
BenchmarkSample 10000000               208 ns/op              32 B/op          2 allocs/op

Here we have bytes per operation and allocations per operation. Pretty useful information as for me. You can also enable those reports per-benchmark with b.ReportAllocs() method. But that’s not all, you can also specify a throughput of one operation with b.SetBytes(n int64)method. For example:

func BenchmarkSample(b *testing.B) {
    b.SetBytes(2)
    for i := 0; i < b.N; i++ {
        if x := fmt.Sprintf("%d", 42); x != "42" {
            b.Fatalf("Unexpected string: %s", x)
        }
    }
}

Now output will be:

testing: warning: no tests to run
PASS
BenchmarkSample  5000000               324 ns/op           6.17 MB/s          32 B/op          2 allocs/op
ok      command-line-arguments  1.999s

You can see now throughput column, which is 6.17 MB/s in my case.

Benchmark setup

What if you need to prepare your operation for an each iteration? You definitely don’t want to include time of setup in a benchmark result. I wrote very simple Set datastructure for benchmarking:

type Set struct {
    set map[interface{}]struct{}
    mu  sync.Mutex
}

func (s *Set) Add(x interface{}) {
    s.mu.Lock()
    s.set[x] = struct{}{}
    s.mu.Unlock()
}

func (s *Set) Delete(x interface{}) {
    s.mu.Lock()
    delete(s.set, x)
    s.mu.Unlock()
}
and benchmark for its  Delete method:
func BenchmarkSetDelete(b *testing.B) {
    var testSet []string
    for i := 0; i < 1024; i++ {
        testSet = append(testSet, strconv.Itoa(i))
    }
    for i := 0; i < b.N; i++ {
        b.StopTimer()
        set := Set{set: make(map[interface{}]struct{})}
        for _, elem := range testSet {
            set.Add(elem)
        }
        for _, elem := range testSet {
            set.Delete(elem)
        }
    }
}

Here we have couple of problems:

  • time and allocs of testSet creation included in first iteration (which isn’t big problem here, because there will be a lot of iterations).
  • time and allocs of Add to set included in each iteration

For such cases we have b.ResetTimer()b.StopTimer() and b.StartTimer(). Here those methods used in same benchmark:

func BenchmarkSetDelete(b *testing.B) {
    var testSet []string
    for i := 0; i < 1024; i++ {
        testSet = append(testSet, strconv.Itoa(i))
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        b.StopTimer()
        set := Set{set: make(map[interface{}]struct{})}
        for _, elem := range testSet {
            set.Add(elem)
        }
        b.StartTimer()
        for _, elem := range testSet {
            set.Delete(elem)
        }
    }
}

Now those initializations won’t be counted in benchmark results and we’ll see only results of Delete calls.

Benchmarks comparison

Of course there is nothing to do with benchmark if you can’t compare them on different code.

Here is an example code of marshaling struct to json and benchhmark for it:

type testStruct struct {
    X int
    Y string
}

func (t *testStruct) ToJSON() ([]byte, error) {
    return json.Marshal(t)
}

func BenchmarkToJSON(b *testing.B) {
    tmp := &testStruct{X: 1, Y: "string"}
    js, err := tmp.ToJSON()
    if err != nil {
        b.Fatal(err)
    }
    b.SetBytes(int64(len(js)))
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        if _, err := tmp.ToJSON(); err != nil {
            b.Fatal(err)
        }
    }
}

It’s commited in git already, now I want to try cool trick and measure its performance. I slightly modify ToJSON method:

func (t *testStruct) ToJSON() ([]byte, error) {
    return []byte(`{"X": ` + strconv.Itoa(t.X) + `, "Y": "` + t.Y + `"}`), nil
}

Now it’s time to run our bechmarks, let’s save their results in files this time:

go test -bench=. -benchmem bench_test.go > new.txt
git stash
go test -bench=. -benchmem bench_test.go > old.txt

Now we can compare those results with benchcmp utility. You can install it with go get golang.org/x/tools/cmd/benchcmp. Here is result of comparison:

# benchcmp old.txt new.txt
benchmark           old ns/op     new ns/op     delta
BenchmarkToJSON     1579          495           -68.65%

benchmark           old MB/s     new MB/s     speedup
BenchmarkToJSON     12.66        46.41        3.67x

benchmark           old allocs     new allocs     delta
BenchmarkToJSON     2              2              +0.00%

benchmark           old bytes     new bytes     delta
BenchmarkToJSON     184           48            -73.91%

It’s very good to see such tables, they also can add weight to your opensource contributions.

Writing profiles

Also you can write cpu and memory profiles from benchmarks:

go test -bench=. -benchmem -cpuprofile=cpu.out -memprofile=mem.out bench_test.go

You can read how to analyze profiles in awesome blog post on blog.golang.org here.

Conclusion

Benchmarks is awesome instrument for programmer. And in Go you to writing and analyzing becnhmarks is extremely easy. New benchmarks allows you to find performance bottlenecks, weird code (efficient code is often simpler and more readable) or usage of wrong instruments. Old benchmarks allow you to be more confident in your changes and could be another +1 in review process. So, writing writing benchmarks has enormous benefits for programmer and code and I encourage you to write more. It’s fun!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值