算法基础:图算法和广度优先搜索(基于Python)

本文介绍了如何使用图算法和广度优先搜索(BFS)解决最短距离问题。通过从北京到成都旅游的例子,展示了如何构建问题模型并应用BFS算法。文章详细解释了图的概念,包括节点、边以及有向图和无向图,并用Python代码实现了BFS,用于在人际关系网络中寻找汽车经销商。
摘要由CSDN通过智能技术生成

本博客所有内容均整理自《算法图解》,欢迎讨论交流~

谈到图算法和广度优先搜索,我认为首先要明白这两种算法是用来干嘛的。在这里我引用《算法图解》一书举的一个很经典的例子来讲解。

很多时候我们希望能够找出两样东西之间的最短距离,这里的距离不是单单是相距多少米,有很多含义。我们来看看以下几个问题:

  • 编写国际跳棋AI,计算最少走多少步就可获胜;
  • 编写拼写检查器,计算最少编辑多少个地方就可将错拼的单词改成正确的单词;
  • 根据你的人际关系网络找到关系最近的医生。

其实以上几个问题都是最短距离问题。那么如何来解决这样的最短距离问题呢?

我们从最最简单的最短距离问题开始思考。假设你生活在北京,打算出去旅游,我们在此先忽略关于旅费啊交通啊等等一系列问题,仅仅考虑唯一的一个因素——距离,在上海、南京、天津、合肥、成都、东京、纽约这几个候选城市里,去哪个城市所需要旅行的距离最短呢?

很明显,这个最短距离问题很多人可以基于经验就回答出来,因为很明显天津最近;OK,那我们如果稍稍修改一下,我们不是求去一个城市,而是上面那些城市我都必须去一遍,最后再回到北京,选择什么路线距离最短呢?

好吧,这个问题就很复杂了,其实这是一个经典的旅行商问题,我们必须罗列出所有的可能路线,再一个一个比较才可以选出最优路线来。

很明显,这里我们需要画图,因为只有把这些城市在地图中的位置全部画出来,根据比例尺去计算彼此之间的距离,然后再根据不同的距离计算来选择路线。

所以,图算法是解决最短距离问题的非常有用的算法,而图算法中的广度优先搜索

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值