本博客所有内容均整理自《算法图解》,欢迎讨论交流~
谈到图算法和广度优先搜索,我认为首先要明白这两种算法是用来干嘛的。在这里我引用《算法图解》一书举的一个很经典的例子来讲解。
很多时候我们希望能够找出两样东西之间的最短距离,这里的距离不是单单是相距多少米,有很多含义。我们来看看以下几个问题:
- 编写国际跳棋AI,计算最少走多少步就可获胜;
- 编写拼写检查器,计算最少编辑多少个地方就可将错拼的单词改成正确的单词;
- 根据你的人际关系网络找到关系最近的医生。
其实以上几个问题都是最短距离问题。那么如何来解决这样的最短距离问题呢?
我们从最最简单的最短距离问题开始思考。假设你生活在北京,打算出去旅游,我们在此先忽略关于旅费啊交通啊等等一系列问题,仅仅考虑唯一的一个因素——距离,在上海、南京、天津、合肥、成都、东京、纽约这几个候选城市里,去哪个城市所需要旅行的距离最短呢?
很明显,这个最短距离问题很多人可以基于经验就回答出来,因为很明显天津最近;OK,那我们如果稍稍修改一下,我们不是求去一个城市,而是上面那些城市我都必须去一遍,最后再回到北京,选择什么路线距离最短呢?
好吧,这个问题就很复杂了,其实这是一个经典的旅行商问题,我们必须罗列出所有的可能路线,再一个一个比较才可以选出最优路线来。
很明显,这里我们需要画图,因为只有把这些城市在地图中的位置全部画出来,根据比例尺去计算彼此之间的距离,然后再根据不同的距离计算来选择路线。
所以,图算法是解决最短距离问题的非常有用的算法,而图算法中的广度优先搜索